IAR)-Link and IAR J-Trace
User Guide

JTAG Emulators for
ARM Cores

COPYRIGHT NOTICE
© Copyright 2006-2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks and XScale a trademark of Intel
Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Third edition: July 2010
Part number: J-Link/J-TraceARM-3

Internal reference: IMAE

Preface

Welcome to the IAR J-Link and IAR J-Trace User Guide for JTAG Emulators for ARM Cores.

About this guide

This guide provides an overview over the major features of J-Link and J-Trace, gives you some background information
about JTAG, ARM and Tracing in general and describes J-Link and J-Trace related software packages. Finally, the
chapter Support and FAQs on page 119 helps to troubleshoot common problems.

For simplicity, we will refer to J-Link ARM as J-Link in this manual.

For simplicity, we will refer to J-Link ARM Pro as J-Link Pro in this manual.

TYPOGRAPHIC CONVENTIONS

This manual uses the following typographic conventions:

Style Used for

Keyword Text that you enter at the command-prompt or that appears on the display (that is system functions,
file- or pathnames).

Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Table 1: Typographic conventions

Literature and references

To gain deeper understanding of technical details, see:

Reference Title Comments
[ETM] Embedded Trace Macrocell™ Architecture This document defines the ETM standard, including signal
Specification, ARM IHI 0014 protocol and physical interface.

It is publicly available from ARM (www.arm.com).

Table 2: Literature and references

J-Link_J-TraceARM-3 Partl. Using the compiler

3

4

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Table of Contents

PrEface ... 3
ADoUL this SUILE ...ttt ettt a et et e bt et e sbeeae st ebeebeene 3
TypographiC CONVENTIONSc..cocviriiriiiieiieiietett ettt ettt ettt et eae e et et esaesaeesnesaeeanesneennennens 3

Literature and FEfErENCESc..cooiiiiiiiiiiiie ettt ettt st ettt 3
INEFOAUCTION ..o 11
REQUIFEIMENTES ..ottt et sb et sttt sbt et s bt e bt sbe e b et e st e easenbeenee 11
SUPPOIEEd OS ..ottt ettt b et sh e bt et a et bt a e bbbttt ebes 11
J-LINK/ J-Trace MOdEls ..ottt sttt sttt e st b e st e e be e st e ebee et s 11
MOAE] COMPATISON ..evieiienieriiiiienteete ettt ettt et st et bt et e sb e e e e bt e s bt beestesbeesbesbeenbesbeenbesbeenbesbeensenbeenee 12

J-LANK ARM oottt b et b et et b et ne e 13

JoLINK UTEFA Lottt ettt ettt e b b bt e bt e bt b e et e s bt e st e s bt e sbeebe e b eaee 16

J-LANK ARM LILE ...oiiiiiieiiiieiiieitee ettt bttt ettt b et b et bt ebe e ne 17

J-TTACE ARM .ottt b ettt et bttt s bbbt e bttt ettt eb e eaee 19

J-Trace fOr COTtEX-IM3 ...c..oiiiiiiiiete ettt sttt et e b e e s at e s bt e s bt e et esbeeeabeenbeesabeebeesanean 20

Common features of the J-Link product family ..., 22
SUPPOItEd CPU COFES ...ttt sttt st ettt ebe et ebe bbb b et 22
UPCOMING SUPPOTLEA COTES ..uvirurierurieiierieeieeniieeieeittesteetteseteesteesseessbeesstesaseeseesasessbeesssesseesssesssesnseenns 23

LICENSING .ot s 25
INErOAUCLION ..ottt et sb et sttt s bt et st et sbe e b et e st e easenbeenee 25
Software components requiring a license ... 25
LICENSE LYPES ..ottt ettt ettt sa e et b e bt et b et ebe et eaee 25
BUIIE-IN LICEIMSE .evtiiiiiiiiieterteee ettt ettt s be et bttt bt et e s bt et sbeeas e e eaee 26

KEY-DASEA LICEISEcuviiiiniiiiiiiieieiteie ettt st et e s st e sne e 26
DEVICE-DASEA LICEISEeeuveeuieiiiiieiieiestteiteete ettt sttt sttt ettt b et sb et sb e e bt et e sbe et sbeensenbeenee 26

Legal use of original J-Link softwarecccociiiiiiiiininii e 27
PrOUCLES ..ottt et b et e a et e bttt e bt e sa e e bt e bt et e s b e ebt e b e et e et e ebeeaeeaee 28
JoLUTIK ettt bbbt b et be e ene 28

JoLINK UIEEA oottt ettt ettt ettt et et sae st e bt sae e s bt e e b e e st eneemneeaee 28

JTTACE ettt ettt b et e s bt st e bt st e bt sat e e be e eate ettt eab e e b et et e ebeenateen 28

TAR: J-LINK LEEE .ottt ettt sttt st sttt sb et st a e sbe e st enneeanes 29

JELINK OBS .ottt bbbttt b bbbttt b e 29
HIE@GAl CIONES ...t enens 29
SEEUP ottt e R RSt 31
Installing the J-Link ARM software and documentation packc..cc.coccooiiininiiiinnininenene 31

SETUP PIOCEAUIE ...nvieiiniiiiieniiiiteteettet ettt ettt ettt ea e et eb e e bt sb e e bt e bt e bt s bt et e et aenbesuteaesstenbesbeentenbeensenbeens 31

Setting up the USB interface ... e 31
Verifying correct driver INStAllationcccocierieriiiiniienieeiee ettt st stesbeesbeesaeesbeesaeeseenas 31
Uninstalling the J-Link USB dFiver ...ttt st 33
J-Link and J-Trace related SOftWare ...t 35
J-LINK related SOFEWAKEcocoooiiiiieeeee ettt ettt e et ettt e e et e st e nsesneeaeeseenseeneens 35
J-Link software and documentation PACKAZEcccceerieriiiinieniieeiie ittt 35

J-Link software and documentation package in detailccccoooiiiiiiii 35
J-Link Commander (Command 1ine t001)cccceirriiririeniriiininiciinietescee et 36

J-Link STR91x Commander (Command 1ine tO0l)cccceevueerieriieiiieniieiieeseeneeeieeseeeveesaeessveeeeas 36

J-Link STM32 Commander (Command 1IN tOOL)ccoeviviiiiiiiiriieeeeiireee e et eeetreeeeeeeireeeeeeennes 37

J-MEM MEMOTY VIEWET ...cueetiiiiiiieiieetieie ettt sttt ettt b ettt et h et esbe et sa e etesbe et e abe e besbeenseeneenes 37

J-Link_J-TraceARM-3

J-Flash ARM (Program flash memory via JTAG)c.cooviiriiiiiiieniieteeeeeete et 37

Using the J-LINKARMLAIL ...ttt 38
What is the JLINKARM.AIL? ...oiiiiiiii ettt ettt sr et s saese e ene 38
UpPdating the DL ...oo.ciiiiii ettt sttt et sb et bttt bt e et saeenaeeaees 38
Determining the version of JLINKARM.AILc..cccooiiiiiiiiiiic e 39
Determining which DLL is used by @ PrOZIAIMcocueiueriiriiiieniinienieiteesteiesitee sttt 40

Working with J-Link and J-Trace ..ot 41

Connecting the target SYStEMcooiiiiii ettt ettt s sa et 41
POWET-01 SEQUETICE ...cuviiiiiiiiiiieeie ettt ettt ettt et e sat e st e s bt e st e e bt e e st e sabeesbbeeabeesbeesbeenseenas 41
Verifying target deviCe CONMNECTIONcovuiriirieriiriieiiniieie ettt st ettt sat et ette bt et et e bt e et eaeeseeenees 41
PIODIEIIIS ...ttt ettt st e bt e st e s bt e s ab e e bt e s st e s bt e s beeeabe e beesaaeeaee e 41

INAICALONS ...ttt st sttt s et 41
IMAAIN INAICALOT ..eneieiiiiiieeiteete ettt ettt et e st e bt e sht e e bt e sbbesab e e btesabeeabeeshaesabesabeesaaeebeenas 41
INPUL TNAICALOT ..ttt ettt ettt et st eb et s bt et eb et eae et e sbeebesaeenbeeneen 42
OULPUL TNAICALOT .ttt ettt ettt sr e st e es e st e et eseesreennesaeenneeanes 43

JTAG INEEIFACE ...ttt e ettt e et et e s beesteeeabeesatessbeenbaessseenseesasesnsessseesssennseenns 43
Multiple devices in the SCAN ChAINcoiiiiiiieiiee ettt sae e 43
Sample configuration dialog DOXESccceeriiriiiiiiiiiiirie ettt ettt ettt et ste bt e st e sbeesaeenaaeeas 44
Determining values for scan chain configurationcoccoeceeveriiieneiieieeeee e 45
JTAG SPEEA .ttt ettt et e st s bt et e e s et e e bt e sabeea bt e s st e sateesbbessbesnbeesabeenaaenas 46

SWD QNEEIFACE ...ttt ettt et e s s a e b et se e e et et eaeenesbesae 46
SWD SPEEA ...ttt ettt et st s h e e et a e n e et sae s 46
SWO ettt ettt ettt et ebe e s 46

Multi-core debUZZINGccooiiiiiiiii ettt 47
How multi-core debugging WOTKScooiriiriiriiriiniiieneeeeeee ettt s 48
Using multi-core debugging in detailcccooiiiiiiiiiiiiiiiiiiicee e 49
Things you should be aWare Ofccccooiiiiriiiiiiii ettt s 50

Connecting multiple J-Links / J-Traces to your PC ... 51
HOW d0€S 1t WOTK? ..ottt s 51
Configuring multiple J-Links / J-TTACESccueeiiruieiiiriieieieeercee sttt 52
Connecting to a J-Link / J-Trace with non default USB-Addressccceeeerviienieniiienieniienieenieeieenne 53

JLINK CONEPrOl PANElottt ettt bttt b et ee e 53
TADS e 53

RESEL SEFAtEGIES ..ottt ettt et a ettt e s bt e st e s bt et e s bt en b e bt enbeebeen e b nes 58
Strategies for ARM 7/ dEVICEScc.coiiiiriiiiiiieiiiieie ettt 58
Strategies fOr COrteX-IM AEVICESccueriiriiriiriiriieiirieee ettt ettt sttt bbbt e e sbe et be e e saeenees 60

Using DCC for MEMOKY ACCESSc.ooiiiiiiiiieiieeie ettt enens 61
WHaAL 1S TEQUITEA? .oeeiieitieiieeitete ettt ettt et sttt e st e bt e sa e e st esbtesabeenbtesabesabeesbbesssesnbeesaseensaeas 61
Target DCC RANAIEToc.oiiiiiiiiiee ettt sttt eb et e st et e et enae st e naeeaean 61
Target DCC abort RANAIETooouiiiiiiiiiiecie ettt ettt et e bt st e ebe e sbaesbeenaaeeas 61

JLINK SCRIPE fIlES ..o ettt ettt et sttt b et e bt et e bt et e b e aeenee e 62
SUPPOTLEA COMMEANAS ...eevriiuiieriieiiieniteeieette et te sttt et e sttt et e s ibesabeesabesabeebeesabeesseesateenbeesssesnseesssesnseens 62
Executing J-Link SCIIPE FIlES ...cc.eeuiiiiiiiiieiee ettt st eb e st nae e 64

COMMEANG SEFINESooiiiiiiiiii ettt ettt a b e bbbt st s b e bt e st et et et et ebeebenbenaens 65
List of available cOmMmAandscccccooviiiiiiiiiiiieiec e e 65
USIng cOMMANA SEINEZS ...cveeviiuieiiiiieierteteneete ettt ettt e e st e e st e saesae e e saeeaesteessesaeesnesaeesnesaeennesnnen 70

Switching off CPU clock during debugcccooiiiiiiiiiee e 71

Cache handling ...ttt e a ettt ae et ettt e s b e ee s aeenbeeaeens 71
CACNE CONETEIICY ..eeuiiiiiiieiieiieeite ettt sttt ettt et st et e st e bt e sat e s beessbesabeenbbesabeeabeesabeenbeesneesnbaenasenns 71

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

(@13 s Tl e] (T 1 1 U (- ARSI 72

Cache handling Of ARMT7 COTESeeiuiirriiiiiieriieiteiiieeteerite st e site sttt e bt esitesteesatesbesbeessbesseesasesseenseenns 72

Cache handling of ARMO COTESceriririiniiiiiiieiiiet ettt ettt eaee 72

Flash download and flash breakpoints ... 73
INErOAUCTION ...ttt ettt ettt e e et et e s et eseese e s e e see s e eseenseenseeseensenseenes 73
LICENSING .ottt ettt et et sb et sat et she bt sttt e b ettt ean b enee 73
SUPPOFLEd dEVICEScc.oiiiiiiiiii ettt st sttt et b et sbe et sbe et e eaeenees 75
Using flash download and flash breakpoints ... &3
TAR Embedded WOTKDENCKoouiiiiriiiiiiiiiiectetecete ettt 83
DIEVICE SPECIfICS ... 85
ANAIOG DIEVICES ...ttt ettt st h et bt et h et e he et bt ettt saeeneen 85
ADUCTXXX ettetteeiteesttesite et e st et e bttt e sate s bt esbteeaee e b eeeabeesbeesab e e bt e bt e e bt e eatesabeesabeeabeenbteeabeenbeeeabeebeesatean 85
ATIMEL ..ottt ettt a e at et e bt e bt bt e b e e b et en et et et n b et et e n st eneeaeebeene e 86
ATOTSAMYT ettt ekttt e b et et et e et ea e entes e e st e et eb e eteeae et et et e s ententeneeneeneebeeneenens 86
ATOTSAMO ettt ettt e h bbbt bbbt et et et ea e bt et bbb eae 88
Fre@SCale ...ttt ettt et h et e a et a e et bt et be et e e at e bt et e bt en e e b nes 88
IMACTLX ittt ettt ettt et et ettt e st et e et e e se s e ss e b e s e sessessensesseseesees e et e aseese s ensesensensesseseassesseseeneesenss 89
LUMINAEY MICEO ..ottt b ettt ettt et bt et e s bt et st easenbeenee 89
Unlocking LMB3SXXX EVICESoeuveuieiiniiiieieitenieee ettt ettt ettt sae s st ne e e e e saeennes 90
Stellaris LM3ST00 SEIIES ..c..eevertiriertirienieeiteteeiteste ettt sttt et sb sttt et sate et st e ae st e saesbeenbesanens 90
Stellaris LIM3S300 SEIIESveervierieiiieiieeieeiee ettt ettt ettt et stt e bt e bt e st e bt e sat e e bt e satesabeesbbesaeeennee 90
Stellaris LIM3S600 SEIIES ..c..covteruirieriirienieeiteteeiteste ettt sttt st ettt sb et bt et sbeesae st e sbesbeenbesanens 90
Stellaris LIM3S800 SEIIESeerrvierieriieniieeieeiteeeiteett ettt ettt et sbt et esbte st e btesat e e bt e sabesabeesbaesaeeennee 90
Stellaris LM3S2000 SETIESccveruertertirienieetenieetente ettt st ste sttt sttt st e bt sbtetesaeeaesbeeaesbeessenbeessesbeens 90
Stellaris LM3SO100 SETIEScc.eerieriiiiriiieiieieeeiteeie ettt ettt stt et e bt e st e bt e s bt e st e satesateebeesaeeeases 90
Stellaris LM3S6400 SETIEScc.evueeiirtirieniietenieeitente ettt sttt ettt ettt et saee et bt e b st esaenbeebenaeens 91
Stellaris LIM3SO700 SETIEScc.eerieriiieriieeieeitteeiteeie et ettt ettt stt e st e bt e st e e bt e s bt e sabeesbeesateebeesaeesares 91
Stellaris LM3S6900 SETIESccuevueeiirtirieniieiterieeitente ettt ettt ettt sttt et et sae et bt e b sbeeaenbeebenbeens 91

INDKP ..ttt ettt ettt e et e e st et e et e e s e et e eh e b e b et e s b et entestes b e Rt eR e eR e R e s et ensenbensensensentesteseeneeneeseesenne 91
PO ettt bbbttt et h et h e e bt bt h e et b e bbbt b e ebe bt b b et s 92

(@ QLTS ST PRSPPI 93
DA L O 720)-SR 93

ST MICrO@IECtIrONICSc.oiiiiiiiiiiii ettt ettt ettt et ettt sae et st eaesaees 94
STR 71X tttetiitietieteetete ettt et et et et eete st e s se st e sesseseessessese et e et e sesse s e sessansansensensansesseseensaseaseeneaseesessessens 95

STR 73X ettt et ettt et h et ettt e st et ea e e bt e bt e bt eb bt btk b e b et en e n b et en b eh e e aeeaeeheeaeeaeeheeteebesaen 95

STR 75X tttetteteetieteeteste et e et et et et et e teetessessessesesseseessessese et e et e s e sse s e sessensassensensessesteneenteseeseeneaseeseereenens 95
STROTX ettt ettt h ettt b e bttt e et et e s e st e st eheeb e e bt eh e eb e e bt eb e et et e b et ententene e st eaeebesbesaen 95
STIMB2 ettt ettt et et et et e e te e b e et e b e besseneessesseseas e et e st es e s e s e s e s ensensensenbenteneentestestenteseeseenenneas 95
TeXAS INSEFUMIENLSooiiiiiiiiiiiiii ettt ettt sttt et e bt e et e bttt saeentesaeeaeeneen 96
TIMISATO ettt e a ekttt st e ettt et et en et et e st ekt eh e e Rt ekt ke ehe et et et et et ententeneeneeneeneeaennn 96
Target interfaces and QdAPLEIS ...t 97
20-pin JTAG/SWND CONNECLOLccocoiiiiiiiieiiicee e 97
PINOUL FOT JTAG ..ottt et sttt et st b e e bt et e bttt ebe e eaee 97
PInout fOr SWD .ottt st e st st e bt e sate st e s st e e bt e sateebeenaeean 99
38-pin Mictor JTAG and Trace CONNECLOFLcccooiiiiiiiniiiiiiieeieeeeet ettt et 100
Connecting the target DOATcoioiiiiiiiiiee ettt sttt ae et sae e b 101

J-Link_J-TraceARM-3

PINOUL et e e et e e ee et e e e e et e e e e e eetar e e e e eenareeeeeentrraeeeeaataraeeennarareeeeeantes 102

Assignment of trace information pins between ETM architecture Versionscccccecceveveeruereennen. 103

TTACE SIZNALS ..eeieutieiieeiiieciteee ettt ettt ettt e s a e e bt e s bt e ea bt e satesabeesbbeenbeessaesabaensaesaseensaesaseennns 103

19-pin JTAG/SWD and Trace CONNECLOFLc.oocoeiiiiiiiiiieieeieie ettt st s eeeaens 104
Target POWET SUPPLY ..veeuiiiiiieiiee ettt et ettt et et ettt e s e s e enesanens 105

AUAPLELS ...ttt bt h et bt h e bt et eb et she et bt et e s bt e besaeen 105
Background infOrmMation ... 107
JTAG ettt et sttt ettt e a ettt et e 107

Test ACCESS POTL (TAP) ..ottt ettt ettt st e sttt e st e saree e 107

DIALA TEGISTETS ..cuveeuieiieiiitieie ettt sttt ettt ettt et e bt et ebtesae et e sbeeb b e bt et e s bt ebb e bt eatenaeeaeenbeeneenbesbeens 107

INSTIUCHION TEZISIET ...cveiuiieiieiiiiteieet ettt ettt e ae st s e et e ne et esae e e seennesneeanens 107

The TAP CONIOIIEToouiiiiiiiiiiiiiiiiiiiict ettt s st s st e 108

Embedded Trace Macrocell (ETM) ... 109
TLIZZET CONAITION ..eevvieiiiiiiieeiieeite ettt ettt ettt et e st e bt e st e e bt e sateeabeesabeesbeesatesnbaessbesnbeesasesaseennns 109

Code tracing and data trACIIEc..ccvevvririririinenienieieiet ettt ettt et ettt e e e sae st eneene b e 109

J-Trace integration - TAR EWARMcccooiiiiiiiiiiietce ettt sttt e s 110

Embedded Trace Buffer (ETB) ...ttt e 114

FIash Programimingc.ccoooiiiiiiiiiniete ettt ettt ettt sttt sttt et et bes 114

How does flash programming via J-Link / J-Trace Work?cccccccceoiiiiiiininiiniininencneciencenicnens 114

Data download t0 RAMooiiiiiieee ettt sttt sttt st 114

Data download via DCCccccioiiiiiiiiiiiiiice ettt 115

Available options for flash programmingccccccoociiiiiiiiiiiinine e 115

JLINK / J-Trace fIFMWAFEoooiiiiiiie ettt ettt st ettt et e e be e sbae s abeenbaessseeaeesssesnses 115
FITMWATE UPAALEcueeeeiiiieiieeie ettt ettt ettt st e st e b e e b e e et et e eb e e bt eaeesaeebeenbesbeensesbeans 115

Invalidating the fITMWATEccooiiiiiiiiiii e 115

Designing the target board fOr trace ... 117
Overview of high-speed board design ... 117
AVOIAING STUDS ettt ettt st e s bt st e e bt e st e e bt e sab e e bt e sateebeesabesbeesabesaseennas 117

Minimizing Signal Skew (Balancing PCB Track Lengths)ccoccoceviriiininiieniniiniiicnceicneeieene 117

MiInimizing CroSStALKcc.oocieiiiiiiiiiieieeeee ettt sttt et e sae s s e enesreeas 117

Using impedance matching and terminationc.ccecerieiereenieneeieneete ettt siee e sseeaens 117
Terminating the trace signal ...ttt 117

Rules for Series termMINALOLSccoeiiiiiriiniiiiiiiieieiere et s s 118

SIZNAl FEQUIFEMIENTS ..ottt b et ettt eb et e st et eae e bt et e naeeneenaeeaeas 118
SUPPOIt anNd FAQS ... 119
Measuring download speed ... 119

TESt BNVIFONMIMENL ...ttt s sttt s sb e st 119
TroubleshOOting ..ottt sttt b e sttt 119
GENETAL PTOCEAUIEeiutiiiiiiiiiiie ittt ettt ettt ettt ettt st e st e s bt e s bt e e bt e bt e sabe e bt e sbeesaseeseesaeeas 119

Typical Problem SCENATIOScceviiviirieiiiiiiieiieert ettt sttt 120

SHGNAL ANALYSIS ..ot bbbttt ettt et ea e e 121

SEATE SEQUETICE .uuvieniieeiiieiieeiieertte sttt et e st e ebe e st e sateesbteeabeesbeesabeenbeesateenstesaseenbeessbeenbeansseenseensaesaseenseesnsean 121
TIOUDIESROOTING ...ceeieeiiieiiete ettt ettt et b e et b et e bt et e e bt et e saeetesbeenbesbeentesbeans 121

CONLACLING SUPPOFL ..ottt ettt et et ettt bbbt et e bt e et e bt esbesaeensesaeennes 122
Frequently Asked QUESLIONSccooiiiiiiiiii et 122
GIOSSAIY ..ot 125
Literature and FEfEIr@NCES ...t 129

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

J-Link_J-TraceARM-3

IAR J-Link and IAR }J-Trace
10 User Guide J-Link_J-TraceARM-3

Introduction

This chapter gives a short overview about J-Link and J-Trace.

Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows 2000 or later. For a list of all operating systems
which are supported by J-Link, refer to Supported OS on page 11.

Target System

A target system with a supported CPU is required.
You should make sure that the emulator you are looking at supports your target CPU. For more information about which
J-Link features are supported by each emulator, please refer to Model comparison on page 12.

Supported OS

J-Link can be used on the following operating systems:

e Microsoft Windows 2000

e Microsoft Windows XP

e Microsoft Windows XP x64
e Microsoft Windows 2003

e Microsoft Windows 2003 x64
e Microsoft Windows Vista

e Microsoft Windows Vista x64
e Windows 7

e Windows 7 x64

J-Link / J-Trace models

J-Link / J-Trace is available in different variations, each designed for different purposes / target devices. Currently, the
following models of J-Link / J-Trace are available:

e J-Link ARM

e J-Link Ultra

e J-Trace ARM

e J-Trace for Cortex-M3

In the following, the different J-Link / J-Trace models are described and the changes between the different hardware

versions of each model are listed. To determine the hardware version of your J-Link / J-Trace, the first step should be
to look at the label at the bottom side of the unit. J-Links / J-Traces have the hardware version printed on the back label.

J-Link_J-TraceARM-3 1

12

If this is not the case with your J-Link / J-Trace, start JLink . exe. As part of the initial message, the hardware version
is displayed.

:\Program Files'SEGGER" JLink ARM_¥402d" JLink.exe

Ll

SEGGER J-Link Commander U4.82d (’'7* for help>
Compiled Mar 12 2889 15:39:38

DLL version U4.82d. compiled Mar 12 2889 15:39:15
Firmware: J-Link ARM U8 compiled Mar 12 268089 15:28:83

Hardware: UE.008
/N = 1

UTarget = B.086U
JTAG speed: 5 kHz
J-Link>_

MODEL COMPARISON

The following tables show the features which are included in each J-Link / J-Trace model.

Hardware features

J-Link J)-Trace CM-3 J-Trace
usB yes yes yes
Ethernet no no no
Supported cores ARM7/9/11, Cortex- ARM 7/9 (no tracing), ARM 7/9

MO/MI1/M3 Cortex-M3
JTAG yes yes yes
SWD yes yes no
SWoO yes yes no
ETM Trace no yes yes

Software features

Software features are features implemented in the software primarily on the host. Software features can either come
with the J-Link or be added later using a license string.

J-Link)-Trace CM-3 J-Trace
yes(opt) yes(opt) yes(opt)

Flash breakpoints2

' Most IDEs come with its own flashloaders, so in most cases this feature is not essential for debugging your
applications in flash. The J-Link flash download (FlashDL) feature is mainly used in debug environments where the
debugger does not come with an own flashloader (e.g. the GNU Debugger). For more information about how flash
download via FlashDL works, please refer to Flash download and flash breakpoints on page 73.

2 In order to use the flash breakpoints with J-Link no additional license for flash download is required. The flash
breakpoint feature allows setting an unlimited number of breakpoints even if the application program is not located in
RAM, but in flash memory. Without this feature, the number of breakpoints which can be set in flash is limited to the
number of hardware breakpoints (typically two for ARM 7/9, six for Cortex-M3) For more information about flash
breakpoints, please refer to Flash download and flash breakpoints on page 73.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

J-LINK ARM

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
Microsoft Windows 2000 or later. For a complete list of all operating systems which are
supported, refer to Supported OS on page 11.J-Link has a built-in 20-pin JTAG connector,
which is compatible with the standard 20-pin connector defined by ARM.

Additional features

Direct download into flash memory of most popular microcontrollers supported
Full-speed USB 2.0 interface

Serial Wire Debug supported *

Serial Wire Viewer supported *

Download speed up to 720 KBytes/second **

JTAG speed up to 12 MHz

RDI interface available, which allows using J-Link with RDI compliant software

* = Supported since J-Link hardware version 6

** = Measured with J-Link Rev.5, ARM7 @ 50 MHz, 12MHz JTAG speed.

J-Link_J-TraceARM-3

Introduction

13

tor dns ®processcrs

(4]

o8

JTAG W SWD

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link ARM. All

values are valid for J-Link ARM hardware version 8.

’General

Supported OS

Electromagnetic compatibility (EMC)
Operating temperature
Storage temperature

Relative humidity (non-condensing)

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7

Windows 7 x64

EN 55022, EN 55024
+5°C ... +60°C
-20°C ... +65 °C
Max. 90% rH

‘Mechanical

Size (without cables)

Weight (without cables)

100mm x 53mm x 27mm

70g

}Available interfaces

USB interface

Target interface

USB 2.0, full speed

JTAG 20-pin
(14-pin adapter available)

}ITAG/SWD Interface, Electrical

Power supply

Target interface voltage (V|p)

Target supply voltage

Target supply current

Reset Type

Reset low level output voltage (Vo)

For the whole target voltage range (1.8V <= V| <= 5V)
LOW level input voltage (V)

HIGH level input voltage (V)

For 1.8V <= Vg <= 3.6V

LOW level output voltage (Vg) with a load of 10 kOhm
HIGH level output voltage (Von) with a load of 10 kOhm
For 3.6 <= V| <=5V

LOW level output voltage (Vg) with a load of 10 kOhm
HIGH level output voltage (Von) with a load of 10 kOhm

USB powered

Max. 50mA + Target Supply current.

1.2V .. 5V

4.5V ... 5V (if powered with 5V on USB)

Max. 300mA

Open drain. Can be pulled low or tristated.

VOL <= 10% of V":

V|L <= 40% of V":
V|H >= 60% of V”:

VOL <= 0% of V":
VOH >=90% of V":

VOL <= 20% of V":
VOH >= 80% of V":

}ITAGISWD Interface, Timing

SWO sampling frequency
Data input rise time (T,.;)
Data input fall time (T¢g;)
Data output rise time (T,q4o)
Data output fall time (T¢g,)
Clock rise time (T,)

Clock fall time (T¢.)

Max. 6 MHz
Tedi <= 20ns
T¢gi <= 20ns
Trdo <= 10ns
Ttdo <= 10ns
T <= 10ns
Ti. <= 10ns

Table 3: J-Link ARM specifications

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Introduction

Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hard ARM7 ARMY Cortex-M3
ardware via JTAG via JTAG via SWD
J-Link Rev. 6 — 8 720 Kbytes/s (12MHz JTAG) 550 Kbytes/s 180 Kbytes/s
(12MHz JTAG) (12 MHz SWD)

Table 4: Download speed differences between hardware revisions

All tests have been performed in the testing environment which is described on Measuring download speed on
page 119.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host CPU core etc.

Hardware versions

Versions 1-4

Obsolete.

Version 5.0

Identical to version 4.0 with the following exception:

e Uses a 32-bit RISC CPU.
e Maximum download speed (using DCC) is over 700 Kbytes/second.

e JTAG speed: Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:

48 MHz / n, where n is 4, 5, ..., resulting in speeds of:

12.000 MHz (n = 4)

9.600 MHz (n =5)

8.000 MHz (n = 6)

6.857 MHz (n=7)

6.000 MHz (n = 8)

5.333 MHz (n=9)

4.800 MHz (n = 10)

e Supports adaptive clocking.

Version 5.2

Identical to version 5.0 with the following exception:
e Target interface: RESET is open drain

Version 5.3

Identical to version 5.2 with the following exception:

e 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored and limited. J-Link automatically
switches off 5V supply in case of over-current to protect both J-Link and host computer. Peak current (<= 10 ms)
limit is 1A, operating current limit is 300mA.

Version 5.4

Identical to version 5.3 with the following exception:
e Supports 5V target interfaces.

Version 6.0

Identical to version 5.4 with the following exception:

Outputs can be tristated (Effectively disabling the JTAG interface)
Supports SWD interface.

SWD speed: Software implementation. 4 MHz maximum SWD speed.
J-Link supports SWV (Speed limited to 500 kHz)

J-Link_J-TraceARM-3

—e

Version 7.0

Identical to version 6.0 with the following exception:

e Uses an additional pin to the UART unit of the target hardware for SWV support (Speed limited to 6 MHz).
Version 8.0

Identical to version 7.0 with the following exception:

e SWD support for non-3.3V targets.

J-LINK ULTRA

J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex and other supported CPUs. It is fully compatible to
the standard J-Link and works with the same PC software. Based on the highly optimized and proven J-Link, it offers
even higher speed as well as target power measurement capabilities due to the faster CPU, built-in FPGA and High
speed USB interface. It connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows 2003,
Windows Vista or Windows 7. J-Link Ultra has a built-in 20-pin JTAG/SWD connector.

Additional features

Fully compatible to the standard J-Link

Very high performance for all supported CPU cores
Hi-Speed USB 2.0 interface

Serial Wire Debug (SWD) supported

Serial Wire Viewer (SWV) supported

SWYV: UART and Manchester encoding supported
SWO sampling frequencies up to 25 MHz

Target power can be supplied

Target power consumption can be measured with high accuracy. External ADC can be connected via SPI

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link Ultra. All
values are valid for J-Link Ultra hardware version 1.

Note:Some specifications, especially speed, are likely to be improved in the future with newer versions of the J-Link
software (freely available).

’General

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64

Windows 7

Windows 7 x64
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C

Relative humidity (non-condensing)

Max. 90% rH

‘Mechanical

Size (without cables)

Weight (without cables)

100mm x 53mm x 27mm

73g

}Available interfaces

USB interface

USB 2.0, Hi-Speed

Table 5: J-Link Ultra specifications

IAR J-Link and IAR }J-Trace
16 User Guide J-Link_J-TraceARM-3

Introduction —e

Target interface JTAG/SWD 20-pin
External (SPI) analog power measurement interface 4-pin (Pins 14, 16, 18 and 20 of the 20-pin JTAG/SWD
interface)

\ITAGISWD Interface, Electrical

Target interface voltage (V) 1.8V .5V

Target supply voltage 4.5V ..5V

Target supply current Max. 300mA

Reset Type Open drain. Can be pulled low or tristated.
Reset low level output voltage (Vo) VoL <= 10% of V|g

For the whole target voltage range (1.8V <= V| <= 5V)

LOW level input voltage (V) VL <= 40% of V|
HIGH level input voltage (V|y) Vin >= 60% of Vg
For 1.8V <= V| <= 3.6V

LOW level output voltage (Vg) with a load of 10 kOhm VoL <= 10% of V¢
HIGH level output voltage (Vo) with a load of 10 kOhm VYon >= 90% of V¢
For 3.6 <= Vg <= 5V

LOW level output voltage (Vg) with a load of 10 kOhm VoL <= 20% of Vg
HIGH level output voltage (Vop) with a load of 10 kOhm Von >= 80% of V¢
,lTAGISWD Interface, Timing

SWO sampling frequency Max. 25 MHz

Data input rise time (T,4;) Tegi <= 20ns

Data input fall time (Ty;) Tigi <= 20ns

Data output rise time (T,4o) Trdo <= 10ns

Data output fall time (T¢q,) Ttdo <= 10ns

Clock rise time (T,.) T <= 10ns

Clock fall time (Tg) T¢. <= 10ns

}Analog power measurement interface ‘
Sampling frequency 50 kHz

Resolution I mA

IExternaI (SPI) analog interface ‘

SPI frequency Max. 4 MHz
Samples/sec Max. 50000
Resolution Max. 16-bit

Table 5: J-Link Ultra specifications

J-LINK ARM LITE

J-Link ARM Lite is a fully functional OEM-version of the J-Link ARM debug
probe, which is available with an IAR KickStart Kit only.

Additional features

Very small form factor

Fully software compatible to J-Link ARM

Any ARM7/ARMY9/ARM11, Cortex-M0/M1/M3 core supported
JTAG clock up to 4 MHz

SWD, SWO supported for Cortex-M devices

Flash download into supported MCUs

Standard 20-pin 0.1 inch JTAG connector (compatible to J-Link ARM)

J-Link_J-TraceARM-3 17

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link ARM Lite.
All values are valid for J-Link ARM hardware version 8.

’General

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64

Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7
Windows 7 x64
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 28mm x 26mm x 7mm
Weight (without cables) 6g
‘Mechanical
USB interface USB 2.0, full speed
Target interface JTAG 20-pin

(14-pin adapter available)

}lTAGISWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.
Target interface voltage (V,f) 3.3V (5V tolerant)
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
LOW level input voltage (V) Max. 40% of V¢
HIGH level input voltage (V) Min. 60% of Vg
}ITAG/SWD Interface, Timing
Data input rise time (T,4;) Max. 20ns
Data input fall time (T¢g;) Max. 20ns
Data output rise time (T,4) Max. 10ns
Data output fall time (T¢g,) Max. 10ns
Clock rise time (T,.) Max. 10ns
Clock fall time (T¢) Max. 10ns

Table 6: J-Link ARM Lite specifications

IAR J-Link and IAR }J-Trace
18 User Guide J-Link_J-TraceARM-3

Introduction

J-TRACE ARM

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It

connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows 2003 or
Windows Vista. J-Trace has a built-in 20-pin JTAG connector and a built in 38-pin JTAG+Trace 4
connector, which are compatible to the standard 20-pin connector and 38-pin connector defined 3
by ARM.

Additional features

e Supports tracing on ARM7/9 targets %l{g
e Download speed up to 420 Kbytes/second * W o
e DCC speed up to 600 Kbytes/second * :

* = Measured with J-Trace, ARM7 @ 50 MHz, 12MHz JTAG speed.

Specifications for J-Trace

‘General

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Operating Temperature +5°C ... +40°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 123mm x 68mm x 30mm

Weight (without cables) 120g

IMechanicaI

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)

JTAG+Trace: Mictor, 38-pin

}ITAGISWD Interface, Electrical

Power Supply USB powered < 300mA
Serial Transfer Rate between J-Trace and Target up to 12 MHz
Supported Target Voltage 3.0 - 3.6 V (5V adapter available)

Table 7: J-Trace specifications

J-Link_J-TraceARM-3

Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware ARM?7 via JTAG ARMY via JTAG

-Trace Rev. | 420.0 Kbytes/s 280.0 Kbytes/s
Y Y

(12MHz JTAG) (12MHz JTAG)

Table 8: Download speed differences between hardware revisions

All tests have been performed in the testing environment which is described on Measuring download speed on
page 119.

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

Hardware versions
Version 1

This J-Trace uses a 32-bit RISC CPU. Maximum download speed is approximately 420 KBytes/second (600 KBytes/
second using DCC).

J-TRACE FOR CORTEX-M3

J-Trace for Cortex-M3 is a JTAG/SWD emulator 5
designed for Cortex-M3 cores which includes o &
trace (ETM) support. J-Trace for Cortex-M3 can ~ SRR 4
also be used as a J-Link and it also supports
ARMY7/9 cores. Tracing on ARM7/9 targets is
not supported.

Additional features

e Has all the J-Link functionality
e Supports tracing on Cortex-M3 targets

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Trace for Cortex-
M3. All values are valid for the latest hardware version of J-Trace for Cortex-M3.

’General

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64

Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7
Windows 7 x64
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 123mm x 68mm x 30mm
Weight (without cables) 120g
‘Mechanical
USB interface USB 2.0, full speed
Target interface JTAG 20-pin

(14-pin adapter available)

}ITAGISWD Interface, Electrical
Table 9: J-Trace for Cortex-M3 specifications

IAR J-Link and IAR }J-Trace
20 User Guide J-Link_J-TraceARM-3

Power supply

Target interface voltage (V)
Target supply voltage

Target supply current

LOW level input voltage (V)
HIGH level input voltage (V|y)

USB powered
Max. 50mA + Target Supply current.

1.2V .. 5V

4.5V ... 5V (if powered with 5V on USB)
Max. 300mA

Max. 40% of V¢

Min. 60% of V¢

Introduction

\lTAGISWD Interface, Timing

Data input rise time (T,.4;)
Data input fall time (T¢y;)
Data output rise time (T,qo)
Data output fall time (T¢y,)
Clock rise time (T,..)

Clock fall time (Tg)

Max. 20ns
Max. 20ns
Max. 10ns
Max. 10ns
Max. 10ns
Max. 10ns

’Trace Interface, Electrical

Power supply

Target interface voltage (V)
Voltage interface low pulse (V)

Voltage interface high pulse (V|y)

USB powered
Max. 50mA + Target Supply current.

1.2V ... 5V
Max. 40% of Vi
Min. 60% of V|

’Trace Interface, Timing

TRACECLK low pulse width (T,)
TRACECLK high pulse width (T,,,)
Data rise time (T,q)

Data fall time (Tgg)

Clock rise time (T,)

Clock fall time (Tg)

Data setup time (T)

Data hold time (T},)

Min. 2ns
Min. 2ns
Max. 3ns
Max. 3ns
Max. 3ns
Max. 3ns
Min. 3ns
Min. 2ns

Table 9: J-Trace for Cortex-M3 specifications

Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware

Cortex-M3 via SWD

J-Trace Rev. |

190 Kbytes/s (12MHz SWD)

Table 10: Download speed differences between hardware revisions

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

Hardware versions
Version 2

Obsolete.

Version 3.1

Identical to version 2.0 with the following exceptions:

e Hi-Speed USB

e Voltage range for trace signails extended to 1.2-3.3 V

e Higher download speed

J-Link_J-TraceARM-3

—e

21

Common features of the J-Link product family

USB 2.0 interface (Full-Speed/Hi-Speed, depends on J-Link model)

Any ARM7/9/11 (including thumb mode), Cortex-M0/M1/M3 core supported
Automatic core recognition

Maximum JTAG speed 12/25 MHz (depends on J-Link model)

Seamless integration into the IAR Embedded Workbench® IDE

No power supply required, powered through USB

Support for adaptive clocking

All JTAG signals can be monitored, target voltage can be measured
Support for multiple devices

Fully plug and play compatible

Standard 20-pin JTAG connector, standard 38-pin JTAG+Trace connector
USB and 20-pin ribbon cable included

Memory viewer (J-Mem) included

Flash programming software (J-Flash) available

Full integration with the IAR C-SPY® debugger; advanced debugging features available from IAR C-SPY
debugger.

14-pin JTAG adapter available

J-Link 19-pin Cortex-M Adapter available

J-Link 9-pin Cortex-M Adapter available

Adapter for 5V JTAG targets available for hardware revisions up to 5.3

Optical isolation adapter for JTAG/SWD interface available

Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to target with overload protection)

Supported CPU cores

J-Link / J-Trace has been tested with the following cores, but should work with any ARM7/9/11 and Cortex-M0/M1/
M3 core. If you experience problems with a particular core, do not hesitate to contact Segger.
ARM7TDMI (Rev 1)
ARM7TDMI (Rev 3)
ARMT7TDMI-S (Rev 4)
ARMT720T

ARMO920T

ARM922T
ARMO926EJ-S
ARMY46E-S
ARMO66E-S
ARMI1136JF-S
ARMI1136]-S
ARM1156T2-S
ARMI1156T2F-S
ARM1176JZ-S
ARMI1176JZF
ARM1176JZF-S
Cortex-M0O

Cortex-M1

Cortex-M3

IAR J-Link and IAR }J-Trace
22 User Guide J-Link_J-TraceARM-3

UPCOMING SUPPORTED CORES

o Cortex-A8/A9
e Cortex-R4
e X-Scale

J-Link_J-TraceARM-3

Introduction —e

23

IAR J-Link and IAR }J-Trace
24 User Guide J-Link_J-TraceARM-3

Licensing

This chapter describes the different license types of J-Link related software and the legal use of the J-Link software.

Introduction

J-Link functionality can be enhanced by flash download and flash breakpoints (F1ashBP). The flash breakpoint feature
does not come with J-Link and needs an additional licenses. In the following the licensing options of the software will
be explained.

Software components requiring a license
There are different software components which need an additional license:
e Flash breakpoints (F1ashBP)

In the following the licensing procedure and license types of the flash breakpoint feature are explained

License types

For each of the software components which requires an additional license, there are three types of licenses:
Built-in License

This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). This is the type of license you get if you order J-
Link and the license at the same time, typically in a bundle.

Key-based license

This type of license is used if you already have a J-Link, but want to enhance its functionality by using flash
breakpoints. In addition to that, the key-based license is used for trial licenses. To enable this type of license you need
to obtain a license key. This license key has to be added to the J-Link license management. How to enter a license key
is described in detail in Licensing on page 73. Every license can be used on different PCs, but only with the J-Link the
license is for. This means that if you want to use flash breakpoints with other J-Links, every J-Link needs a license.

Device-based license

The device-based license comes with the J-Link software and is available for some devices. For a complete list of
devices which have built-in licenses, please refer to Device list on page 26. The device-based license has to be activated
via the debugger. How to activate a device-based license is described in detail in the section Activating a device-based
license on page 26.

J-Link_J-TraceARM-3

25

26

BUILT-IN LICENSE

This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). To check what licenses the used J-Link have, simply
open the J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-Link’s licenses
automatically, as can be seen in the screenshot below.

= J-Link Commander =] B3

SEGGER J-Link Commander U3.78d <'7’ for help>
Compiled Jan 16 2888 19:55:4@
ion U3.78d. compiled Jan 16 2888 19:55:31
J-Link ARM U6 compiled Jan 21 2688 16:81:17

rels2 : RDI,. FlashBP. FlashDL
UTarget = 3.386U
Info: TotallRLen = 17, IRPrint = Bx881129
JTAG speed: 38 kH=z
Info: CP15.8.8: Bx41259668: ARM. Architecure S5TE
Info: J-Link: ARM?,. 966 core
Found 3 JTAG devices,., Total IRLen = 17:
Id of device #8: BxB4570041
Id of device #1: Bx259660841
Id of device H#2: Bx2457F@41
Found ARM with core Id Bx25966841 (ARM?>
3 EIHkg1.3: 1 pairs addr.comp, B data comp, 4 MM decs. 1 counters
—Lin

KEY-BASED LICENSE

When using a key-based license, a license key is required in order to enable the J-Link flash breakpoint feature. License
keys can be added via the license manager. How to enter a license via the license manager is described in Licensing on
page 73. Like the built-in license, the key-based license is only valid for one J-Link, so if another J-Link is used it needs

a separate license.

DEVICE-BASED LICENSE

The device-based license is a free license, available for some devices. It’s already included in J-Link, so no keys are
necessary to enable this license type. To activate a device based license, the debugger needs to select a supported
device.

Activating a device-based license

In order to activate a device-based license, the debugger needs to select a supported device. To check if the debugger
has selected the right device, simply open the J-Link control panel and check the device section in the General tab.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [329V |—
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

Device list
The following list contains all devices which are supported by the device-based license

Manufacturer Name Licenses

NXP LPC2101 J-Link ARM FlashDL, J-Link ARM FlashBP

Table 11: Device list

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Licensing —eo

Manufacturer Name Licenses

NXP LPC2102 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2103 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2104 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2105 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2106 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2109 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2114 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2119 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2124 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2129 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC213I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2132 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2134 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2136 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2138 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC214I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2142 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2144 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2146 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2148 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2194 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2212 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2214 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2292 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2294 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2364 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2366 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2368 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2378 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2468 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2478 J-Link ARM FlashDL, J-Link ARM FlashBP

Table 11: Device list

Legal use of original J-Link software

The software consists of proprietary programs of SEGGER, protected under copyright and trade secret laws. All rights,
title and interest in the software are and shall remain with SEGGER. For details, please refer to the license agreement
which needs to be accepted when installing the software. The text of the license agreement is also available as entry in
the start menu after installing the software.

Use of software

J-Link software may only be used with original J-Link products. The use of the licensed software to operate product
clones is prohibited and illegal.

J-Link_J-TraceARM-3 27

Products

The following products are original products for which the use of the J-Link software is allowed:

J-LINK

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
Microsoft Windows 2000, Windows XP, Windows 2003 or Windows Vista. J-Link has a
built-in 20-pin JTAG connector, which is compatible with the standard 20-pin connector
defined by ARM.

Licenses

Comes with built-in licenses for flash download and flash breakpoints for some devices.
For a complete list of devices which are supported by the built-in licenses, please refer to
Device list on page 26.

%%n : ik b

J-LINK ULTRA

J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex and other supported CPUs. It is fully compatible to
the standard J-Link and works with the same PC software. Based on the highly optimized and proven J-Link, it offers
even higher speed as well as target power measurement capabilities due to the faster CPU, built-in FPGA and High
speed USB interface. It connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows 2003,
Windows Vista or Windows 7. J-Link Ultra has a built-in 20-pin JTAG/SWD connector.

Licenses

Comes with built-in licenses for flash download and flash breakpoints for some devices. For a complete list of devices
which are supported by the built-in licenses, refer to Device list on page 26.

J-TRACE

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support.
It connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows
2003 or Windows Vista. J-Trace has a built-in 20-pin JTAG connector and a built in 38-
pin JTAG+Trace connector, which is compatible with the standard 20-pin connector and A
38-pin connector defined by ARM. 43

iis

IAR J-Link and IAR }J-Trace
28 User Guide J-Link_J-TraceARM-3

Licensing

IAR: J-LINK LITE

IAR J-Link Lite is an OEM version of J-Link.
Limitations

JTAG speed is limited to 4 MHz.
Licenses

No licenses are included. All licenses can be added.

Note:IAR J-Link Lite is only delivered and supported as part of Starter-Kits. It is not sold to
end customer directly and not guaranteed to work with custom hardware.

J-Link OBs

J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on various evaluation boards.

lllegal Clones

Clones are copies of original products which use the copyrighted original Firmware without a license. It is strictly
prohibited to use original J-Link software with illegal clones. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise issues.

The use of illegal J-Link clones with this software is a violation of US, European and other international laws and is
prohibited.

If you are in doubt if your unit may be legally used with original J-Link software, please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.

J-Link_J-TraceARM-3

—e

29

IAR J-Link and IAR }J-Trace
30 User Guide J-Link_J-TraceARM-3

Setup

This chapter describes the setup procedure required in order to work with J-Link / |-Trace. Primarily this includes
the installation of the J-Link software and documentation package, which also includes a kernel mode J-Link USB
driver in your host system.

Installing the J-Link ARM software and documentation pack

J-Link is shipped with a bundle of applications, corresponding manuals and some sample projects and the kernel mode
J-Link USB driver. Some of the applications require an additional license.

Refer to chapter J-Link and J-Trace related software on page 35 for an overview about the J-Link software and
documentation pack.

SETUP PROCEDURE

To install the J-Link ARM software and documentation pack, follow this procedure:

Note:Check for J-Link related downloads on our website:
http://www.iar.com/jlinkarm

I Connect your computer and the J-Link debug probe using the USB cable. Do not connect the J-Link debug probe to
the evaluation board yet. The green LED on the front panel of the J-Link debug probe will blink for a few moments
while Windows searches for a USB driver.

2 When you do this for the first time, Windows will start the Install wizard. Choose Install from a specific location.

3 When asked to locate the USB drivers, click the browse button and navigate to the directory Program Files\IAR
Systems\Embedded Workbench 5.n\Kickstart\arm\drivers\JLink. This assumes that you already have
installed the AR Embedded Workbench IDE. If not, make sure to install it.

Note that Windows XP might display a warning that the driver is not certified by Microsoft. Ignore this warning and
click Continue.

4 Click Finish. The green LED on the J-Link debug probe stops blinking. The installation is now ready.

5 Remove the USB cable that connects the computer and your J-Link.

Setting up the USB interface

After installing the J-Link ARM software and documentation package it should not be necessary to perform any
additional setup sequences in order to configure the USB interface of J-Link.

VERIFYING CORRECT DRIVER INSTALLATION

To verify the correct installation of the driver, disconnect and reconnect J-Link / J-Trace to the USB port. During the
enumeration process which takes about 2 seconds, the LED on J-Link / J-Trace is flashing. After successful
enumeration, the LED stays on permanently.

J-Link_J-TraceARM-3 31

Start the provided sample application JLink. exe, available in the arm\bin directory of your installation, which
should display the compilation time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no target is connected to J-Link / J-
Trace, and the speed selection. The screenshot below shows an example.

SEGGER J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43

DLL version U3.86, compiled Jun 27 26008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51

JTAG speed: 5 kHz
J-LinkZ>

In addition you can verify the driver installation by consulting the Windows device manager. If the driver is installed
and your J-Link / J-Trace is connected to your computer, the device manager should list the J-Link USB driver as a
node below "Universal Serial Bus controllers" as shown in the following screenshot:

Device Manager =1 E3
J Action View |J = =

E|l WMBASIC
D\g Batteries
Computer
D Disk drives

Dizplay adapters

4} DVD/CD-ROM drives
2 Floppy disk controllers
= Floppy disk drives
= IDE ATASATAPI controllers
&2 Keyhoards
% Mice and other pointing devices
B3 Mebwork adapters
5 Ports [COM & LPT)

= Sound, video and game controllers

+ - Systern devices
|- & Uriversal Serial Bus controllers

% Intel 823714B/ER PCl to USBE Universal Host Controller

J-Link, driver
USE Root Hub

IAR J-Link and IAR }J-Trace
32 User Guide J-Link_J-TraceARM-3

Setup

Right-click on the driver to open a context menu which contains the command Properties. If you select this command,

a J-Link driver Properties dialog box is opened and should report: This device is working properly.

J-Link driver Properties EHE

General | Ditiver |

9@ i J-Link driver

Device type: Univerzal Serial Bus controllers
Manufacturer: Segger
Location: J-Link
— Device statu:
Thiz device iz working properly. ;I

If you are having problems with this device, click Troubleshooter to
start the troubleshoater.

Troubleshooter.

Device usage:
Use this device [enable) j

If you experience problems, refer to the chapter Support and FAQs on page 119 for help. You can select the Driver tab

for detailed information about driver provider, version, date and digital signer.

J-Link driver Properties EHE

General Driver |

9@ i J-Link driver
Diriver Provider: Segger
Criver Date: 07-01-09

Criver Version: 2650
Digital Signer: Microzoft \Windows Hardware Compatibility Publ
To view details about the driver files loaded for this device, click Driver

Detailz. To uninstall the driver files for this device, click Uningtall. To update
the driver files for this device, click pdate Driver.

Uningtall | Update Driver... |

()8 | Cancel |

Uninstalling the J-Link USB driver

If J-Link / J-Trace is not properly recognized by Windows and therefore does not enumerate, it makes sense to uninstall

the J-Link USB driver.

This might be the case when:

e The LED on the J-Link / J-Trace is rapidly flashing.

e The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this procedure:

I Disconnect J-Link / J-Trace from your PC.

J-Link_J-TraceARM-3

—e

33

2 Open the Add/Remove Programs dialog (Start > Settings > Control Panel > Add/Remove Programs)
and select Windows Driver Package - Segger (jlink) USB and click the Change/Remove button.

&R Add/Remove Programs =] 3
Currently installed programs: Sork by:l Mame - I

BN 3-Link ARM V3. 66a =l

lows Driver Package - Segger (jlink) USB
“ {01,09,/2007 2.6.5.0)

Change/Remove

3 Confirm the uninstallation process.

Uninstall Driver Package B

@ All devices uzing this driver will be removed. Do you wish to continue?

IAR J-Link and IAR J-Trace
34 User Guide J-Link_J-TraceARM-3

J-Link and J-Trace related software

This chapter describes J-Link / |-Trace related software.

J-Link related software
J-LINK SOFTWARE AND DOCUMENTATION PACKAGE

J-Link is shipped with a bundle of applications. Some of the applications require an additional license.

Software Description

JLinkARM.dII DLL for using J-Link / J-Trace with third-party programs.

JLink.exe Free command-line tool with basic functionality for target analysis.

JLinkSTR9 Ix Free command-line tool to configure the ST STR9Ix cores. For more information please refer
to J-Link STR? Ix Commander (Command line tool) on page 36

JLinkSTM32 Free command-line tool for STM32 devices. Can be used to disable the hardware watchdog

J-Mem memory viewer

J-Flash

Flash download

Flash breakpoints.

and to unsecure STM32 devices (override read-protection).

Free target memory viewer. Shows the memory content of a running target and allows editing
as well.

Stand-alone flash programming application. Requires an additional license. For more
information about J-Flash please refer to J-Flash ARM User’s Guide (UM08003).

Flash download allows an arbitrary debugger to write into flash memory, using the J-Link flash
loaders.

Flash breakpoints provide the ability to set an unlimited number of software breakpoints in
flash memory areas.(Additional license required)

Table 12: J-Link / J-Trace related software

J-Link software and documentation package in detail
The J-Link / J-Trace software documentation is supplied with IAR Embedded Workbench.

J-Link_J-TraceARM-3

35

36

J-LINK COMMANDER (COMMAND LINE TOOL)

J-Link Commander (JLink.exe) is a tool that can be used for verifying proper installation of the USB driver and to
verify the connection to the ARM chip, as well as for simple analysis of the target system. It permits some simple
commands, such as memory dump, halt, step, go and ID-check, as well as some more in-depths analysis of the state of
the ARM core and the ICE breaker module.

Compiled Jun 27 2888 19:42:43
DLL version U3.86,. compiled Jun 27 2888 19:42:28
irmuware: J-Link ARM U6 compiled Jun 27 2088 18:35:51

UTarget = 3.274U
JTAG speed: 5 kHz=

Info: TotallRLen = 4, IRPrint = Bx81
Found 1 JTAG device,. Total IRLen = 4:

Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>
J-Link>

J-LINK STR9I X COMMANDER (COMMAND LINE TOOL)

J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure STRI1x cores. It permits
some STRY specific commands like:

Set the configuration register to boot from bank O or 1

Erase flash sectors

Read and write the OTP sector of the flash

Write-protect single flash sectors by setting the sector protection bits

Prevent flash from communicate via JTAG by setting the security bit

All of the actions performed by the commands, excluding writing the OTP sector and erasing the flash, can be undone.
This tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.

kSTRI1x.exe

Set the size of the primary flash manually.
Syntax: fsize Bi11213. vhere B selects a 256 Kbhytes device.
1 a 512 Kbytes device. 2 a 1824 KBytes device
and 3 a 2848 Kbytes device
Show configuration register content and security status
Read memory
Syntax: mem <Addr>. <{NumBytes>
Erase flash sectors QTP can not bhe erased>.
Syntax: erase {SectorMaskL>, <SectorMaskH>
SectorMaskL = Bits B-8 mask sectors B-8 of bank 8
SectorMaskH = Bits B-4 mask sectors B-4 of bank 1

Bit 17 masks the configuration sector

Bit 18 masks the User—Code sector

All other hits are ignored
Erase flash bank 8
Erase flash bank 1
Perform a full chip erase
Boot from flash bank x (B and 1 are available>
Sytax: seth {int>
Blank check all flash sectors
Set the security bit. Protects device from read or debuy access
through the JIAG port <{can only be cleared by a full chip erased.

unsecure Unsecure the device. Content of configuration register iz saved.
protect Protect flash sectors.

Syntax: protect <{BankBSectorMask>. {BanklSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Unprotect flash sectors.
Syntax: unprotect {BankBSectorMask>, {BankiSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Read OTP sectors
Write words to the OTP sectors.
Syntax: writeotp {Wordi>, [{Word2>, ..., <UWord8>]

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The I1Os are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-3

J-Link and)-Trace related software

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

J-LINK STM32 COMMANDER (COMMAND LINE TOOL)

J-Link STM32 Commander (JLinkSTM32 . exe) is a free command line tool which can be used to disable the hardware
watchdog of STM32 devices which can be activated by programming the option bytes. Moreover the J-Link STM32
Commander unsecures a read-protected STM32 device by re-programming the option bytes.

Note:Unprotecting a secured device or will cause a mass erase of the flash memory.

nkARM', Output’Release’, ILinkSTM32.exe

SEGGER J-Link Unlock tool for STM3I2F18x devices

Compiled Apr 16 2B0A? @7:59:58

{c>» 2887 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

Connecting...0.K.
Performing init segquence...0.K.
kH=

Press any key to exit.

J-MEM MEMORY VIEWER

J-Mem displays memory contents of ARM-systems and allows modifications of RAM and SFRs (Special Function
Registers) while the target is running. This makes it possible to look into the memory of an ARM chip at run-time;
RAM can be modified and SFRs can be written. You can choose between 8/16/32-bit size for read and write accesses.
J-Mem works nicely when modifying SFRs, especially because it writes the SFR only after the complete value has been
entered.

iy 3-Mem [H[=] B3

File Target Options Help

Address: IDxD Ex_glx_ﬂl Befresh |
fiddress [B (1 (2 [3[4[5[6 (7?82 A [B[C|D[E[F[ASCIT
)IBBBBB66 (6 BB B8 EA FE FF FF EA FE FF FF EA FE FF FF EA
)IAAAAA1A (FE FF FF EA FE FF FF EA 5C @7 8@ En ?C @7 08
BBBBB26 (58 DB 9F E5 58 BB 9F ES5 BF EB A8 E1 18 FF 2F
)IBBBBB36 (48 BB 9F E5 D1 FB 21 E3 48 88 9F E5 D2 F@ 21
IIAAAA4A (PA DA AA E1 6@ O 40 E2 13 F@ 21 E3 @@ DA AB
)IAAAARSA | 2C @@ 9F ES5 OF E@ A@ E1 18 FF 2F E1 24 EA 9F
)IAAAAP6A (24 @@ 9F E5 1@ FF 2F E1 FE FF FF En FE FF FF
)IAAAAA7?A (FE FF FF EA FE FF FF En B0 B0 21 BB 91 6@ 90
)IBBBBBE6 (W8 FB FF FF 25 B1 88 B0 68 BB 88 B0 DD 12 @8

IBBBBAY6 (B8 BS 1A 48 9F 21 C9 43 19 4A BA 68 19 49 88 J

n
IBBBBBEB | C1 62 81 6E 49 87 FC D5 81 6E 8% B7 FC D5 84 -h. n
IBAAAACA |A1 63 81 6E @2 @7 FC D5 A1 6B A3 22 8A 43 B2 63 .c.n.....k.".C.c
IAAAAADA (81 6E @9 @7 FC D5 OE 48 BE 49 61 68 A1 28 B5 E@ .n.....H.I.'.
IBBBBBED (A4 21 41 43 BA 44 BC 4B 53 58 48 1C 1F 28 F? DB .*AC.J.KSPE..<
IIABABFA ([BA 48 BB 49 B1 68 A1 BC B8 47 CA 46 @@ FC FF FF .H.I. ...G.F.

)IBBBB166 (A8 B1 38 BB 44 FD FF FF 81 B6 88 B0 85 1C 19 18 .. 8.D...........
IAAART 8@ F@ FF FF 6C GO0 6@ 6@ 7@ A8 W@ 8@ 34 F1 FF FF1...p...4...
IAAART 74 B0 B0 BB 12 4A 13 48 7@ B4 81 BA 11 1C 12 1D t....J.Hp.......
IAAART Bn E@ BB 68 54 68 15 68 8@ 2B 83 D@ 5B 1E E6 5C ... hTh.h.+._.[..\
IBBBB146 ([EE 54 FB D1 BC 31 BC 32 81 42 8C D2 53 68 14 68 .T...1.2.B..8h.h =

Fieady Connected ARM core id: 3FOFOFOF |Speed: 4000kHz 2

[
[
[
[
[
[
[
[
[
[
AARAARAA |12 B2 BA 68 18 4% 81 62 81 6E C? @7 FC D5 17
[
[
[
[
[
[
[
[
[
[

J-FLASH ARM (PROGRAM FLASH MEMORY VIA JTAG)

J-Flash ARM is a software running on Windows 2000, Windows XP, Windows 2003 or Windows Vista systems and
enables you to program your flash EEPROM devices via the JTAG connector on your target system.

J-Flash ARM works with any ARM7/9 system and supports all common external flashes, as well as the programming
of internal flash of ARM microcontrollers. It allows you to erase, fill, program, blank check, upload flash content, and
view memory functions of the software with your flash devices.

J-Link_J-TraceARM-3

—e

37

38

J-Flash requires an additional license. Even without a license key you can still use J-Flash ARM to open project files,
read from connected devices, blank check target memory, verify data files and so on. However, to actually program
devices via J-Flash ARM and J-Link / J-Trace you are required to obtain a license key.

,J-Flash ARM [C:\Program Files\Seqger\J-Flash ARM\Default jflash] M= E
Fie Edi View Iaget Options Window Help

it PO efault [_[CIx]

Conmection UsB

Name

Init JTAG speed 30
JTAG speed | Auta

TAP rumber <not used>
IR len <ot used>

Chip Generic ARM7/AAM3
Clock spsed <don't care>

Erdian Litte

Check carsId | Mo

ARMcoreld 00

Use target AidM| Mo

FAM addiess | 040

FAM size 8KE

Use DCC mode | Yes

Manufacturer o devics selscted
Device no device selected
Size no device selected
Flash Id no device selected
Base addiess o devics selscted
Organization o device selscted

Application log started
~d-Flash ARH [I-Flash compited Jul 4 2005 14:27,20)

- JLinkARM.dil DL compiled Jun 30 2005 10:57:30)

Fieading flash device lit [C:\Progiam FilesS cggert Flash ARM\Flash.csv]
-List of flash devices read successtully [147 Davices)

Fieading MEL device lit [C:\Program FilesS eggert Flash ARMAMEL. csv]
-List of MCL devices read successhully (50 Devices]

Open projeet file [C:\Program Files\Segger'-Flash ARM\Defaul jflash]
-Project opened

E|

[l

[List of MEU devices rsad successfully (50 Devicss) Not connected i

Features

e Works with any ARM7/ARMO chip

e ARM microcontrollers (internal flash) supported

e Most external flash chips can be programmed

e High-speed programming: up to 300 Kbytes/second (depends on flash device)
e Very high-speed blank check: Up to 16 Mbytes/sec (depends on target)

e Smart read-back: Only non-blank portions of flash transferred and saved

e Easy to use, comes with projects for standard eval boards.

Using the J-LinkARM.dII

WHAT IS THE JLINKARM.DLL?

The J-LinkARM.d11 is a standard Windows DLL typically used from C or C++, but also Visual Basic or Delphi
projects. It makes the entire functionality of the J-Link / J-Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/writing CPU and ICE registers and
reading/writing memory. Therefore, it can be used in any kind of application accessing an ARM core.

UPDATING THE DLL

The IAR C-SPY® debugger is shipped with the JLinkARM.d11 already installed. Anyhow it may make sense to
replace the included DLL with the latest one available, to take advantage of improvements in the newer version.

Updating the JLinkARM.dIl in the IAR Embedded Workbench (EWARM)

It’s recommended to use the J-Link DLL updater to update the JLinkARM.d11 in the IAR Embedded Workbench. The
IAR Embedded Workbench IDE is a high-performance integrated development environment with an editor, compiler,
linker, debugger. The compiler generates very efficient code and is widely used. It comes with the J-LinkARM.d11
in the arm\bin subdirectory of the installation directory. To update this DLL, you should backup your original DLL
and then replace it with the new one.

Typically, the DLL is located in C: \Program Files\IAR Systems\Embedded Workbench 5.n\arm\bin\.

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-3

J-Link and)-Trace related software

After updating the DLL, it is recommended to verify that the new DLL is loaded as described in Determining which
DLL is used by a program on page 40.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and allows the user to update the
JLinkARM.d11 in all installations of the IAR Embedded Workbench, in a simple way. The updater is automatically
started after the installation of a J-Link software version and asks for updating old DLLs used by IAR. The J-Link DLL
updater can also be started manually. Simply enable the checkbox left to the IAR installation which has been found.
Click Ok in order to update the JLinkARM.d11 used by the IAR installation.

J SEGGER J-Link DLL Updater ¥3.86 [%]

Link

The following 3rd-party applications uzing JLinkARM.dll have been found:

[[]14R Embedded Warkbench for ARM 4.404 (DLL V3.20h in "C:AT oohCHARNARM_V4404 4R M bin")

[]14R Embedded Warkbench for ARM 4.414 [DLL ¥3.80c in "C:AT oohCHARSNARM_V441 AMARMAbIR")

[[]14R Embedded Warkbench for ARM 4.424 [DLL V3,84 in "C:AToo\CHARNARM_V44245AR M bin'")

14R Embedded Workbench for ARM 4.314 [DLL ¥3.82 in "CATooMCHARNWARM_WV4 ANARMBEIR')

[]14R Embedded Warkbench for ARM 4.304 (DLL ¥3.80c in "C:AT oohCHARNARM_V430454RMbin")

[[]14R Embedded Warkbench for ARM 5.10 (DLL ¥3.78d in "C:AT oohCHARNARM_WS1 08WARMbIn")

[[]14R Embedded Warkbench for ARM 5.20 (DLL ¥3.85f in "C:AT oohCAARAARM_W520_betaB854ARMYbin'")
14R Embedded Workbench for ARM 5.20 [DLL V3.85) in "C:AT ool CMARNARM_WE20_beta302\AFMbin')
[[]14R Embedded Warkbench for ARM 5.17 [DLL Y3.78 in "C:AT oo CHARNARM_VST1_BETA_BO7ARMYbIn'")
[]14R Embedded Woarkbench for ARM 5.11 [DLL Y3.85h in "C:AT ook CAARNARM_WE11_97994ARM kN b
F 14F Embedded ‘Workbench for AR 520 [DLL W3.81k in "C:\Program Filesh AR SystemshEmbedded Workbench 5.0 [E'/ARM 5 20 ALPHA]\AHM;LI

| v

Select Al Select Mone |

Select the ones you would like to replace by thiz version.
The previous version will be renamed and kept in the zame folder, allowing manual “undo”.
I case of doubt, do not replace existing DLL(s).

*f'ou can always perform this operation at a later time via start menu.
Ok Cancel

DETERMINING THE VERSION OF JLINKARM.DLL

To determine which version of the JLinkARM.dII you are facing, the DLL version can be viewed by right clicking the
DLL in explorer and choosing Properties from the context menu. Click the Version tab to display information
about the product version.

jlinkarm.dll Properties 2=l
General Wersion | Securityl Summaryl
File wersion: ~ 3.0.4.0
Description: SEGGER J-Link ARM interface DLL

Copyright: Copyright © 2004, 2005

r— Other version infarmation

Item name: Walue:

Compary Mame 3.00d ;I
Intemal Mame

Language

Original Filename
Product Mame

QK I Cancel | Apply |

J-Link_J-TraceARM-3

—e

39

DETERMINING WHICH DLL IS USED BY A PROGRAM

To verify that the program you are working with is using the DLL you expect it to use, you can investigate which DLLs
are loaded by your program with tools like Sysinternals’ Process Explorer. It shows you details about the DLLs, used
by your program, such as manufacturer and version.

8§ Process Explorer - Sysinternals: www.sysinternals.com 10l =|
File ©Options Yiew Process Find DLL Help

BalrE@Es3 & a6 INIINGGE

Process | FID | CPU | Diescription | Compan... |
E = Spstem |dle Process 1] 93

T Interupts n'a Hardware Interupts

| DPC: n'a Defered Procedu...

=l System]

= @. explorer. exe 1148 ‘Windows Explorer Microgoft...

L procesp.exe 480 1 Syzinternals Proc... Sysintern...

XlarldePM.exe 1460 |4F Embedded ... |AR Spst...
Mame ¢ | Diescription | Company Marne | ergion | -
indicdll. dil Kevboard Language Indicator Shell... Microzoft Corporation 5.00,2920.0000

5 5 R J-Li interface DLL SEGGER b ntroll 3 0
Kemel.dl 1&F C-SPY Debugger Kemel 14F Spstems 4.06.0000. 0000
kemel32.dl Windows MT BASE APl Client DLL Microsoft Corporation 5.00.2195.6688 |
locale.nls
Logfindowe. dil 18R Log ‘Window 14F Spstems 4.06.0000. 0000
lz32.dll LZ Expand/Compress APl DLL Microzoft Corporation h.00.2195.6611
MFCF.dll MFCOLL Shared Library - Retail Ve... Microzoft Corporation 7.10.3077.0000
mpr.dil Multiple Provider Router DLL Microzoft Corporation h.00.2195.6611 -
CPU Usage: 1% |C0mmit Charge: 12.24% |Pr0cesses: 34 | v

Process Explorer is - at the time of writing - a free utility which can be downloaded from www.sysinternals.com.

IAR J-Link and IAR }J-Trace
40 User Guide J-Link_J-TraceARM-3

Working with J-Link and }J-Trace

This chapter describes functionality and how to use J-Link and J-Trace.

Connecting the target system
POWER-ON SEQUENCE

In general, J-Link / J-Trace should be powered on before connecting it with the target device. That means you should
first connect J-Link / J-Trace with the host system via USB and then connect J-Link / J-Trace with the target device via
JTAG. Power-on the device after you connected J-Link / J-Trace to it.

VERIFYING TARGET DEVICE CONNECTION

If the USB driver is working properly and your J-Link / J-Trace is connected with the host system, you may connect J-
Link / J-Trace to your target hardware. Then start JLink . exe which should now display the normal J-Link / J-Trace
related information and in addition to that it should report that it found a JTAG target and the target’s core ID. The

screenshot below shows the output of JLink.exe. As can be seen, it reports a J-Link with one JTAG device connected.

l;:-.',. C:\Program Files'\SEGGER" JLink ARM_¥386" JLink.exe

5 R J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43
DLL version U3.86, compiled Jun 27 26008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51
Hardware: U6t.80
SN - I
UTarget = 3.274U
JTAG speed: 5 kHz=
: TotallRLen = 4. IRPrint = BxB1

Found 1 JTAG device,. Total IRLen = 4:

Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>
J-Link>

PROBLEMS

If you experience problems with any of the steps described above, read the chapter Support and FAQs on page 119 for
troubleshooting tips. If you still do not find appropriate help there and your J-Link / J-Trace is an original IAR Systems
product, you can contact support via e-mail. Provide the necessary information about your target processor, board etc.
and we will try to solve your problem. A checklist of the required information together with the contact information
can be found in chapter Support and FAQs on page 119 as well.

Indicators

J-Link uses indicators (LEDs) to give the user some information about the current status of the connected J-Link. All
J-Links feature the main indicator. Some newer J-Links such as the J-Link Ultra come with additional input/output
Indicators. In the following, the meaning of these indicators will be explained.

MAIN INDICATOR

For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with a bi-color indicator (Green &
Red LED), which can show multiple colors: green, red and orange.

J-Link_J-TraceARM-3

Single color indicator (J-Link V7 and earlier)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for |0ms once J-Link heart beat. Will be activated after the emulator has been in idle mode for at
per second least 7 seconds.

GREEN, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 13: J-Link single color main indicator

Bi-color indicator (J-Link V8)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for |0ms once J-Link heart beat. Will be activated after the emulator has been in idle mode for at

per second least 7 seconds.
ORANGE Reset is active on target.
RED, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 14: J-Link single color LED main color indicator

INPUT INDICATOR

Some newer J-Links such as the J-Link Ultra come with additional input/output Indicators. The input indicator is used
to give the user some information about the status of the target hardware.

Bi-color input indicator

Indicator status Meaning

GREEN Target voltage could be measured. Target is connected.

ORANGE Target voltage could be measured. RESET is pulled low (active) on target side.

RED RESET is pulled low (active) on target side. If no target is connected, reset will be also

active on target side.

Table 15: J-Link bi-color input indicator

IAR J-Link and IAR J-Trace
42 User Guide J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

OUTPUT INDICATOR

Some newer J-Links such as the J-Link Ultra come with additional input/output Indicators. The output indicator is used
to give the user some information about the emulator-to-target connection.

Bi-color output indicator

Indicator status Meaning

OFF Target power supply via Pin 19 is not active.

GREEN Target power supply via Pin 19 is active.

ORANGE Target power supply via Pin |9 is active. Emulator pulls RESET low (active).
RED Emulator pulls RESET low (active).

Table 16: J-Link bi-color output indicator

JTAG interface

By default, only one ARM device is assumed to be in the JTAG scan chain. If you have multiple devices in the scan
chain, you must properly configure it. To do so, you have to specify the exact position of the ARM device that should
be addressed. Configuration of the scan is done by the target application. A target application can be a debugger such
as the AR C-SPY® debugger, which offers a dialog box for this purpose.

MULTIPLE DEVICES IN THE SCAN CHAIN

J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hardware where multiple chips are
connected to the same JTAG connector. As can be seen in the following figure, the TCK and TMS lines of all JTAG
device are connected, while the TDI and TDO lines form a bus.

—{T01 Device1 Ttoop—— pltni Device 0 TDOp—

»|TMS
p| TRST

—p|TCK

Lpp{ TCK
L—p|TMS
L p|{TRST

&

TCK
TMS
TRST

— L 0] DO |{¢————
JTAG

Currently, up to 8 devices in the scan chain are supported. One or more of these devices can be ARM cores; the other
devices can be of any other type but need to comply with the JTAG standard.

J-Link_J-TraceARM-3

43

Configuration

The configuration of the scan chain depends on the application used. Read JTAG interface on page 43 for further
instructions and configuration examples.

SAMPLE CONFIGURATION DIALOG BOXES

As explained before, it is responsibility of the application to allow the user to configure the scan chain. This is typically
done in a dialog box; some sample dialog boxes are shown below.

IAR J-Link configuration dialog box

This dialog box can be found under Project|Options.

Options for node “at91sam7s-ek™ E
Category:

Factory Settings |

44

General Options
CiC++ Compiler
Assembler -
Cutput Converter Setup Connection | Breakpoint8|
Customn Build — Communication
Build Actions & UsE IDeviCe] ,l
Linker =
Debugger " ICPAP Iaaa.bbb.ccc.ddd
Sirmulator
Angel rInterface JTAG scan chain
GDE Server ¥ JTAG scan chain with multipls targets
IAR. ROM-manitar & ITAR
2 TAP number: |0
 5wD ¥ Scan chain contains non-4RM devices
Macraigor : e |0
RO Freceeding bits: I
Third-Party Driver
™ Log communication

[sTOOLKIT_DIR$hcspycommlog

()8 I Cancel |
IAR J-Link configuration dialog box
This dialog can be found under Project |Options.

Category:

Factory Settings |

General Options
CiC++ Compiler
Assembler -
Cutput Converter Setup Connection | Breakpoint8|
Customn Build — Communication
Build Actions & UsE IDevice] ,l
Linker =
Debugger " ICPAP Iaaa.bbb.ccc.ddd
Sirmulator
Angel ~ Interface JTAG scan chain
GDE Server ¥ JTAG scan chain with multipls targets
IAR. ROM-manitar & ITAR
2 TAP number: |0
LMI FTDI 5wD W Scan chain containg non-5AM devices
Macraigor : e |0
RO Freceeding bits: I
Third-Party Driver
™ Log communication

[sTOOLKIT_DIR$hcspycommlog

o]

Cancel |

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

DETERMINING VALUES FOR SCAN CHAIN CONFIGURATION
When do | need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be used. In other cases, J-Link / J-Trace
may succeed in automatically recognizing the devices on the scan chain, but whether this is possible depends on the

devices present on the scan chain.

How do | configure the scan chain?

2 values need to be known:

e The position of the target device in the scan chain

e The total number of bits in the instruction registers of the devices before the target device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the manual supplied by the manufacturers
of the others devices.

ARM7/ARMO have an IR len of four.

Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices connected to the JTAG port.

Examples

{701 Device1 Ttoop——

o1 Device 0 Tpop—

— =
S22 $ 22
FFF FFF
XX +TT

L D - TDO

JTAG

The following table shows a few sample configurations with 1,2 and 3 devices in different configurations.

Device 0 Device | Device 2 .

Chip(IR len) Chip(IR len) Chip(IR len) Position IR len
ARM (4) - - 0
ARM (4) Xilinx(8) - 0 0
Xilinx(8) ARM (4) - | 8
Xilinx(8) Xilinx(8) ARM (4) 2 16
ARM (4) Xilinx(8) ARM(4) 0 0
ARM(4) Xilinx(8) ARM (4) 2 12
Xilinx(8) ARM (4) Xilinx(8) | 8

Table 17: Example scan chain configurations

The target device is marked in blue.

J-Link_J-TraceARM-3

—e

45

46

JTAG SPEED

There are basically three types of speed settings:

e Fixed JTAG speed
e Automatic JTAG speed
e Adaptive clocking.

These are explained below.

Fixed JTAG speed

The target is clocked at a fixed clock speed. The maximum JTAG speed the target can handle depends on the target
itself. In general ARM cores without JTAG synchronization logic (such as ARM7-TDMI) can handle JTAG speeds up
to the CPU speed, ARM cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S, ARM966EJ-
S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note:On ARM cores without synchronization logic, this may not work reliably, because the CPU core may be clocked
slower than the maximum JTAG speed.

Adaptive clocking

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to the processor
clock outside the core. This ensures there are no synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and synchronization requirements result in
a lower maximum clock frequency than with non-adaptive clocking.

SWD interface

The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port with a clock (SWDCLK)
and a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and test functionality. SWDIO and
SWCLK are overlaid on the TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out data
on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one bit of data is transmitted or received
on the SWDIO.

SWD SPEED

Currently only fixed SWD speed is supported by J-Link. The target is clocked at a fixed clock speed. The SWD speed
which is used for target communication should not exceed target CPU speed * 10. The maximum SWD speed which
is supported by J-Link depends on the hardware version and model of J-Link. For more information about the
maximum SWD speed for each J-Link / J-Trace model, please refer to J-Link / J-Trace models on page 11.

SWO

Serial Wire Output (SWO) support means support for a single pin output signal from the core. The Instrumentation
Trace Macrocell (ITM) and Serial Wire Output (SWO) can be used to form a Serial Wire Viewer (SWV). The Serial
Wire Viewer provides a low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually done by the debugger.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e

Max. SWO speeds

The supported SWO speeds depend on the connected emulator. They can be retrieved from the emulator. Currently, the
following are supported:

Emulator Speed formula Resulting max. speed
J-Link V6 6MHz/n, n >= 12 500kHz
J-Link V7/V8 6MHz/n, n >= | 6MHz

Table 18: J-Link supported SWO input speeds

Configuring SWO speeds

The max. SWO speed in practice is the max. speed which both, target and J-Link can handle. J-Link can handle the
frequencies described in SWO on page 46 whereas the max. deviation between the target and the J-Link speed is about
3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO output speed of the CPU is
determined by TRACECLKIN, which is normally the same as the CPU clock.

Examplei

Target CPU running at 72 MHz. n is be between 1 and 8192.
Possible SWO output speeds are:

72MHz, 36 MHz, 24MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
6MHz, n =12 6MHz, n = | 0

3MHz, n =24 3MHz,n=2 0

<=3

2MHz, n = 36 2MHz,n =3 0

Table 19: Permitted SWO speed combinations

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5SMHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
2MHz, n =5 2MHz, n =3 0

IMHz, n =10 IMHz,n =6 0

769kHz, n = 13 750kHz, n = 8 2.53

Table 20: Permitted SWO speed combinations

Multi-core debugging

J-Link / J-Trace is able to debug multiple cores on one target system connected to the same scan chain. Configuring
and using this feature is described in this section.

J-Link_J-TraceARM-3 47

HOW MULTI-CORE DEBUGGING WORKS

Multi-core debugging requires multiple debuggers or multiple instances of the same debugger. Two or more debuggers
can use the same J-Link / J-Trace simultaneously. Configuring a debugger to work with a core in a multi-core
environment does not require special settings. All that is required is proper setup of the scan chain for each debugger.
This enables J-Link / J-Trace to debug more than one core on a target at the same time.

The following figure shows a host, debugging two ARM cores with two instances of the same debugger.

Debugger

Instance 1

Both debuggers share the same physical connection. The core to debug is selected through the JTAG-settings as
described below.

IAR J-Link and IAR J-Trace

48 User Guide J-Link_J-TraceARM-3

USING MULTI-CORE DEBUGGING IN DETAIL

I Connect your target to J-Link / J-Trace.

ARM core on your target.

Start your debugger, for example IAR Embedded Workbench for ARM.

Options for node “BTL_AT91_¥430™

Working with }J-Link and }J-Trace

Choose Project |Options and configure your scan chain. The picture below shows the configuration for the first

]|

Cateqgary:

eneral Options

C/C++ Compiler Setup

Connection I

Facton Settingz |

4R ROM-maonitor
b acraigar

ROl

Third-Party Driver

Azzembler — Cammunication
Cuztorn Build
Build Actions UsB
Litker i TCRAP Iaaa. bbb, ooz ddd
D ebugger
Sirnulator —JTAG scan chain
Anael

[V JTAG zcan chain with multiple targets

TAP number: IEI

[™ Sean chain contains non-4Rk devices

Freceeding bits: I':I

[T Log communication

I$TDDLK|T_D|H$'\CSD}'DDI‘I‘|H‘L log

N

x|

Cancel |

4 Start debugging the first core.

5 Start another debugger, for example another instance of IAR Embedded Workbench for ARM.

J-Link_J-TraceARM-3

—e

49

6 Choose Project|Options and configure your second scan chain. The following dialog box shows the configuration
for the second ARM core on your target.

Options for node “BTL_AT91_¥430" |

Categany: Factary Settings |
eneral Optionz :
C/C++ Compiler Setup Lonnection I
Azsembler — Communication
Cuztom Build
Build Actions f* UsB
Linker = TCRAP Iaaa.bbb.ccc.ddd
Debugger
Simulator —JTAG zcan chain
Angel

I4F ROM-moritr v JTAG scan chain with multiple targets

4P rumber [T

M acraigor [Scan chain containg non-4Fk devices

RDI
Third-Party Diriver Freceeding bits: II:I

[T Log communication
I$TDDLK|T_D|H$"\CSP}'CDI‘I‘II‘I‘I.|DQ J

] I Cancel |

7 Start debugging your second core.

Example:

TAP number TAP number
Core #1 Core #2 Core #3

debugger #I debugger #2
ARM7TDMI ARM7TDMI-S ARM7TDMI 0 |
ARM7TDMI ARM7TDMI ARM7TDMI 0 2
ARM7TDMI-S ARM7TDMI-S ARM7TDMI-S | 2

Table 21: Multicore debugging

Cores to debug are marked in blue.

THINGS YOU SHOULD BE AWARE OF

Multi-core debugging is more difficult than single-core debugging. You should be aware of the pitfalls related to JTAG
speed and resetting the target.

JTAG speed

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores in the same chain is the minimum
of the maximum JTAG speeds.

For example:
Core #1: 2MHz maximum JTAG speed
Core #2: 4MHz maximum JTAG speed

Scan chain: 2MHz maximum JTAG speed

IAR J-Link and IAR }J-Trace
50 User Guide J-Link_J-TraceARM-3

Working with J-Link and }J-Trace

Resetting the target

All cores share the same RESET line. You should be aware that resetting one core through the RESET line means
resetting all cores which have their RESET pins connected to the RESET line on the target.

Connecting multiple J-Links / J-Traces to your PC

You can connect up to 4 J-Links / J-Traces to your PC. In this case, all J-Links / J-Traces must have different USB-
addresses. The default USB-address is O.

In order to do this, 3 J-Links / J-Traces must be configured as described below. Every J-Link / J-Trace need its own J-
Link USB driver which can be downloaded from www.segger.com.

This feature is supported by J-Link Rev. 5.0 and up and by J-Trace.

HOW DOES IT WORK?

USB devices are identified by the OS by their product id, vendor id and serial number. The serial number reported by
J-Links / J-Traces is always the same. The product id depends on the configured USB-address.

e The vendor id (VID) is always 1366

e The product id (PID) for J-Link / J-Trace #1 is 101

e The product id (PID) for J-Link / J-Trace #2 is 102 and so on.

A different PID means that J-Link / J-Trace is identified as a different device, requiring a new driver. The driver for a
new J-Link device will be installed automatically.

The sketch below shows a host, running two application programs. Each application communicates with one ARM core
via a separate J-Link.

Application

Instance 1

J-Link_J-TraceARM-3

51

CONFIGURING MULTIPLE J-LINKS / J-TRACES

8 Start JLink.exe to view your hardware version. Your J-Link needs to be V5.0 or up to continue. For J-Trace the
Version does not matter.

9 Type usbaddr = 1 to set the J-Link / J-Trace #1.

] ILink.exe [_ |O0)

SEGGER J-Link Commander U2.74.81. '7*' for help.

ompiled 18:17:23 on Mov 25 2865L.

DLL version U2.74bh. compiled Mow 25 28685 1@8:17:13
irmware: J-Link compiled Nov 17 20885 16:12:1% ARH Rev.5S
ardware: US.00

rd

Target = @.0880U

peed set to 38 kH=z

—=Link>ushaddr = 1

8B address successfully changed to *1°.

Please unplug the device,. then plug it back in.
—Link>

10 Unplug J-Link / J-Trace and then plug it back in.

Il The system will recognize and automatically install a new J-Link / J-Trace.
=

% J-Link 1 driver

Installing ...

12 you can verify the driver installation by consulting the Windows device manager. If the driver is installed and your J-
Link / J-Trace is connected to your computer, the device manager should list the J-Link USB drivers as a node below
"Universal Serial Bus controllers" as shown in the following screenshot:

J Action Wiew |J L | ||§ |J
BB WMware Yirtual Ethernet Adapter For YMnetl ;I

BB WMware Virtual Ethernet Adapter For YMnet2
BB WMware Virtual Ethernet Adapter For YMnet3
----- BB WMware Virtual Ethernet Adapter For YMnets
- Ports (COM &LPT)

-4 SCSI and RAID controllers

[#H-¢}|> Sound, video and game controllers

[+ Storage volumes

£

:|..
B -'-

Syskem devices
i Serial Bus controllers
¢ Generic USE Hub
v Intel{R) 52801EE USE Universal Host Controller - 24D2
= Inkel{R) 82801EE USE Universal Host Controller - 2404
= Intel{R) 82801EE 1USE Universal Host Controller - 2407
v Intel{R) §2801EE USE Universal Host Controller - 24DE
p Intel{R) §2801EE USEZ2 Enhanced Host Controller - 2400
J-Link. 1 driver
J-Link. driver

USE 2.0 Root Hub
UISE Mass Storage Device

USE Rook Hub
USE Rook Hub —
USE Rook Hub LI

IAR J-Link and IAR }J-Trace
52 User Guide J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e

CONNECTING TO A J-LINK / J-TRACE WITH NON DEFAULT USB-
ADDRESS

Restart JLink.exe and type usb 1 to connect to J-Link / J-Trace #1.

ILink.exe [_ |

. '? for help.

Cnnnectlng to J-Link via USBE (Port: 1>
DLL UBP“an U2_74h, compiled Mov 25 2005 1@:17:13
J-Link compiled Mov 17 20685 16:12:1? ARM Rev.5

U5 . A8

8. 888y
to 38 kH=

You may connect other J-Links / J-Traces to your PC and connect to them as well. To connect to an unconfigured J-
Link / J-Trace (with default address "0"), restart JLink. exe or type usb 0.

J-Link control panel

Since software version V3.86 J-Link the J-Link control panel window allows the user to monitor the J-Link status and
the target status information in real-time. It also allows the user to configure the use of some J-Link features such as
flash download, flash breakpoints and ARM instruction set simulation. The J-Link control panel window can be
accessed via the J-Link tray icon in the tray icon list. This icon is available when the debug session is started.

sl 1:as

To open the status window, simply click on the tray icon.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [329V |—
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

TABS

The J-Link status window supports different features which are grouped in tabs. The organization of each tab and the
functionality which is behind these groups will be explained in this section

General

In the General section, general information about J-Link and the target hardware are shown. Moreover the following
general settings can be configured:
e Show tray icon: If this checkbox is disabled the tray icon will not show from the next time the DLL is loaded.

e Start minimized: If this checkbox is disabled the J-Link status window will show up automatically each time the
DLL is loaded.

e Always on top: if this checkbox is enabled the J-Link status window is always visible even if other windows will
be opened.

J-Link_J-TraceARM-3 53

54

The general information about target hardware and J-Link which are shown in this section, are:

e Process: Shows the path of the file which loaded the DLL.

e J-Link: Shows OEM of the connected J-Link, the hardware version and the Serial number. If no J-Link is
connected it shows "not connected" and the color indicator is red.

e Target interface: Shows the selected target interface (JTAG/SWD) and the current JTAG speed. The target current
is also shown. (Only visible if J-Link is connected)

Endian: Shows the target endianess (Only visible if J-Link is connected)
Device: Shows the selected device for the current debug session.

License: Opens the J-Link license manager.

About: Opens the about dialog.

Settings

In the Settings section project- and debug-specific settings can be set. It allows the configuration of the use of flash
download and flash breakpoints and some other target specific settings which will be explained in this topic. Settings
are saved in the configuration file. This configuration file needs to be set by the debugger. If the debugger does not set
it, settings can not be saved. All settings can only the changed by the user himself. All settings which are modified
during the debug session have to be saved by pressing Save settings, otherwise they are lost when the debug session
is closed.

Section: Flash download

In this section, settings for the use of the J-Link ARM FlashDL feature and related settings can be configured. When
a license for J-Link ARM FlashDL is found, the color indicator is green and "License found" appears right to the J-
Link ARM FlashDL usage settings.

B Flash download

* Auto License found

 On ¥ Skip download on CRC match
 Off W Weiify download

IEnabIed, 10272 bytes downloaded

e Auto: This is the default setting of J-Link ARM FlashDL usage. If a license is found J-Link ARM FlashDL is
enabled. Otherwise J-Link ARM FlashDL will be disabled internally.

e On: Enables the J-Link ARM FlashDL feature. If no license has been found an error message appears.
e Off: Disables the J-Link ARM FlashDL feature.

e Skip download on CRC match: J-Link checks the CRC of the flash content to determine if the current
application has already been downloaded to the flash. If a CRC match occurs, the flash download is not necessary
and skipped. (Only available if 7-Link ARM FlashDL usage is configured as Auto or On)

e Verify download: If this checkbox is enabled J-Link verifies the flash content after the download. (Only available
if 7-Link ARM FlashDL usage is configured as Auto or On)
Section: Flash breakpoints:

In this section, settings for the use of the F1lashBP feature and related settings can be configured. When a license for
FlashBP is found, the color indicator is green and "License found" appears right to the F1ashBP usage settings.

B Flash breakpoint

* Auto License found

 On I~ Show info windav during
O pragram

[Enabled

e Auto: This is the default setting of F1ashBP usage. If a license has been found the F1ashBP feature will be
enabled. Otherwise FlashBP will be disabled internally.

e On: Enables the FlashBpP feature. If no license has been found an error message appears.
e Off: Disables the FlashBP feature.

o Show window during program: When this checkbox is enabled the "Programming flash" window is shown when
flash is re-programmed in order to set/clear flash breakpoints.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Flash download and flash breakpoints independent settings

Working with }J-Link and }J-Trace

These settings do not belong to the J-Link flash download and flash breakpoints settings section. They can be

configured without any license needed.

= E3

General Seftings | Breakpointsl Lag I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Mo I L4
Log file

ﬁc:uunk.mg
Settings file

’7|Not specified

B Flash download

L;:-.'h SEGGER - Control panel

™ Ovenide
Clear |—‘

I~ o verride—‘

M Flash breakpoint

& Auto | License found & Auto | License found
= 0On V Skip download on CRC match 0On ¥ Show info window during
 Off v Verfy download Off program

|Disabled |Disabled

[T Ovenide device selection

V' Allow caching of flash contents [On)
¥ Allow instruction s=t simulation

™| Oweride memaony map

Modity breakpoints during execution IAIIDW j

[Ready 319K ARM_Getspeed (Done) [1.208 sec. in 32 calls 4

Log file: Shows the path where the J-Link log file is placed. It is possible to override the selection manually by
enabling the Override checkbox. If the Override checkbox is enabled a button appears which let the user choose the
new location of the log file.

Settings file: Shows the path where the configuration file is placed. This configuration file contains all the settings
which can be configured in the Settings tab.

Override device selection: If this checkbox is enabled, a dropdown list appears, which allows the user to set a
device manually. This especially makes sense when J-Link can not identify the device name given by the debugger
or if a particular device is not yet known to the debugger, but to the J-Link software.

Allow caching of flash contents: If this checkbox is enabled, the flash contents are cached by J-Link to avoid
reading data twice. This speeds up the transfer between debugger and target.

Allow instruction set simulation: If this checkbox is enabled, ARM instructions will be simulated as far as
possible. This speeds up single stepping, especially when FlashBPs are used.

Save settings: When this button is pushed, the current settings in the Settings tab will be saved in a configuration
file. This file is created by J-Link and will be created for each project and each project configuration (e.g.
Debug_RAM, Debug_Flash). If no settings file is given, this button is not visible.

Modify breakpoints during execution: This dropdown box allows the user to change the behavior of the DLL
when setting breakpoints if the CPU is running. The following options are available:

Allow: Allows settings breakpoints while the CPU is running. If the CPU needs to be halted in order to set the
breakpoint, the DLL halts the CPU, sets the breakpoints and restarts the CPU.

Allow if CPU does not need to be halted: Allows setting breakpoints while the CPU is running, if it does not need
to be halted in order to set the breakpoint. If the CPU has to be halted the breakpoint is not set.

Ask user if CPU needs to be halted: If the user tries to set a breakpoint while the CPU is running and the CPU
needs to be halted in order to set the breakpoint, the user is asked if the breakpoint should be set. If the breakpoint
can be set without halting the CPU, the breakpoint is set without explicitly confirmation by the user.

Do not allow: It is not allowed to set breakpoints while the CPU is running.

J-Link_J-TraceARM-3

—e

55

Break/Watch

In the Break/Watch section all breakpoints and watchpoints which are in the DLL internal breakpoint and watchpoint
list are shown.

.3, SEGGER J-Link ARM - Control panel M= B3
Generall Settings Break/watch | Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl LI_’|
Breakpoints:
ﬂl Handle | Address | Mode | Permizzion | Implementation I
1 - 0x0200011C Unknown — Any Flash - TRC
2 - 008000128 Unknown — Any Flash - TRC
3 008000124 Unknown — Any Flash - TRC
4 0080001 34, Unknown — Any Flash - TRC
5 008000150 Unknown — Any Flash - TRC
E 0080001 B4, Unknown — Any Flash - TRC

‘Watchpoints:
| Handle | Address | Data | Access |
1 0x8000000¢ 0x08000120 (0x00001000 /it 16-bit

Wectar catch:
| ector |

[Ready 319K ARM_Readmem (Done) 1,494 sec, in 219 calls 4

Section: Code
Lists all breakpoints which are in the DLL internal breakpoint list are shown.

Handle: Shows the handle of the breakpoint.

Address: Shows the address where the breakpoint is set.
Mode: Describes the breakpoint type (ARM/THUMB)
Permission: Describes the breakpoint implementation flags.

Implementation: Describes the breakpoint implementation type. The breakpoint types are: RAM, Flash, Hard. An
additional TBC (to be cleared) or TBS (to be set) gives information about if the breakpoint is (still) written to the
target or if it’s just in the breakpoint list to be written/cleared.

Note:It is possible for the debugger to bypass the breakpoint functionality of the J-Link software by writing to the
debug registers directly. This means for ARM7/ARMSY cores write accesses to the ICE registers, for Cortex-M3
devices write accesses to the memory mapped flash breakpoint registers and in general simple write accesses for
software breakpoints (if the program is located in RAM). In these cases, the J-Link software can not determine the
breakpoints set and the list is empty.

Section: Data
In this section, all data breakpoints which are listed in the DLL internal breakpoint list are shown.

e Handle: Shows the handle of the data breakpoint.

e Address: Shows the address where the data breakpoint is set.

AddrMask: Specifies which bits of Address are disregarded during the comparison for a data breakpoint match.
(A 1 in the mask means: disregard this bit)

Data: Shows on which data to be monitored at the address where the data breakpoint is set.
Data Mask: Specifies which bits of Data are disregarded during the comparison
for a data breakpoint match. (A 1 in the mask means: disregard this bit)

Ctrl: Specifies the access type of the data breakpoint (read/write).

CtrlMask: Specifies which bits of Ctrl are disregarded during the comparison for a data breakpoint match.

Log

In this section the log output of the DLL is shown. The user can determine which function calls should be shown in the
log window.

IAR J-Link and IAR }J-Trace
56 User Guide J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e

Available function calls to log: Register read/write, Memory read/write, set/clear breakpoint, step, go, halt, is halted.

3, I-Link ARM [_ [=]

Generall Settingsl BreakAwatch Log |EIF'U Hegsl Target Powerl Sty I

I~ Registerwite [~ Memory wite [V BF set ¥ Step ¥ Halt

I~ Registerread [~ Memoryread W BFclear | Go I IsHalted Clear lng |
J-Link ARM LU2.85i [beta) OLL Log ;I
DOLL Compiled: Jun 26 20E2 17:B6:33

Logging started 2BBE-BE-27 15: 08

[

Te20a &628:

i
T
&=

= 1p8F 3 = @xFFFFFFF1]
dr = BREOEAEEES, Tupe = BuFFFFFFFL)
= 1pBFS = @xFFFFFFF1]

)
9]
EFHandle = BxBE88EEE3)
A

@
I
I
I
I
I
I
I
I
I
I
I
i
% ddr = BxBE1BEFES, Type = B:zFFFFFFF1]
I

I

I

0 0 0 0 0 0 0 0
| L U UL

MG A (it i 5
[T e R Iy Pl i iy e et
1O~ =00 R REErTF= GO
Lty I Tty N Tty Ty T T i
DIDTDIDNNDDDDD00DT
L = e]

@@

G BEEEEEE1)
B168F0S, Type = B:FFFFFFF1]

i o

CPU Regs

In this section the name and the value of the CPU registers are shown.

3, I-Link ARM [_ [=]

Generall Settingsl BreakMatchI Log CPU Regs | Target Powerl Sty I

|ndex | Mame | WValue | State | -
a RO (0x0010269C

1 R1 (0x00000050

2 R2 0x00000010

3 R3 (0x00000003 —
4 R4 0x00201100

5 RS (0x00000000

g RE (0x00000000

7 R7 (0x00000000

g CPSR 0x80000053

| R15(PC) 0x00100FES

10 R8_USR (0x00000000

1 R3_USR (0x00000000

12 R10_USR (0x00000000

13 R11_USR (0x00000000

14 R1Z2_USR (0x00000002

15 R13_USR (0x00000000

18 R14_USR (0x00000000 LI

Ready 4

Target Power

In this section currently just the power consumption of the target hardware is shown.

. J-Link ARM M= B3

Generall Settingsl BreakMatchI Log I CPU Regs Target Power | Sty I Devicel MemMapI

r— Current status——— Permanent status
(% Fower enabled " Fower enabled
" Fower disabled (* Fower disabled
— Power information
Consumption |238md, |—
Ready JLINKARM_ExecCommand {Done) 0,008 sec, in 20 calls 4

J-Link_J-TraceARM-3 57

58

SwWv

In this section SWV information are shown.

3, I-Link ARM [_ [=]
Generall Settingsl BreakMatchI Log I CPU Hegsl Target Power 5w |
Statuzs IUAF!T encoding, 19200 bps Huost buffer |4 MEB |—
Bytes in buffer ID bytes Emulator buffer |4 KE |—

Bytes transferred |235?D bytes

Refresh counter |1 522

|Ready | | 4

e Status: Shows the encoding and the baudrate of the SWV data received by the target (Manchester/UART, currently
J-Link only supports UART encoding).

e Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.

e Bytes transferred: Shows how many bytes have been transferred via SWYV, since the debug session has been
started.

e Refresh counter: Shows how often the SWV information in this section has been updated since the debug session
has been started.

e Host buffer: Shows the reserved buffer size for SWV data, on the host side.
o Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator side.

Reset strategies

J-Link / J-Trace supports different reset strategies. This is necessary because there is no single way of resetting and
halting an ARM core before it starts to execute instructions. For example reset strategies which use the reset pin can
not succeed on targets where the reset pin of the CPU is not connected to the reset pin of the JTAG connector. Reset
strategy 0 is always the recommended one because it has been adapted to work on every target even if the reset pin (Pin
15) is not connected.

What is the problem if the core executes some instructions after RESET?

The instructions executed can cause various problems. Some cores can be completely "confused", which means they
can not be switched into debug mode (CPU can not be halted). In other cases, the CPU may already have initialized
some hardware components, causing unexpected interrupts or worse, the hardware may have been initialized with
illegal values. In some of these cases, such as illegal PLL settings, the CPU may be operated beyond specification,
possibly locking the CPU.

STRATEGIES FOR ARM 7/9 DEVICES

Type 0: Hardware, halt after reset (normal)

The hardware reset pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU. This
typically halts the CPU shortly after reset release; the CPU can in most systems execute some instructions before it is
halted. The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the
faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start of the CPU is delayed after reset
release. If a pause has been specified, J-Link waits for the specified time before trying to halt the CPU. This can be
useful if a bootloader which resides in flash or ROM needs to be started after reset.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and nTRST are coupled, either on
the board or the CPU itself, reset clears the breakpoint, which means that the CPU can not be stopped after reset with
the BP@O reset strategy.

Type I: Hardware, halt with BP@0

The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is programmed to halt program
execution at address 0; effectively, a breakpoint is set at address 0. If this strategy works, the CPU is actually halted
before executing a single instruction.

This reset strategy does not work on all systems for two reasons:

e If nRESET and nTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint, which means
the CPU is not stopped after reset.

e Some MCUs contain a bootloader program (sometimes called kernel), which needs to be executed to enable ITAG
access.

Type 2: Software, for Analog Devices ADuC7xxx MCUs

This reset strategy is a software strategy. The CPU is halted and performs a sequence which causes a peripheral reset.
The following sequence is executed:

The CPU is halted
A software reset sequence is downloaded to RAM

[]
[]
e A breakpoint at address 0 is set
[]

The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before executing instructions of the user

program. It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works with these chips only.

Type 3: No reset

No reset is performed. Nothing happens.

Type 4: Hardware, halt with WP

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
a watchpoint. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release

Type 5: Hardware, halt with DBGRQ

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
the DBGRQ. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release.

Type 6: Software

This reset strategy is only a software reset. "Software reset" means basically no reset, just changing the CPU registers
such as PC and CPSR. This reset strategy sets the CPU registers to their after-Reset values:

PC=0

CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)

All SPSR registers = 0x10

All other registers (which are unpredictable after reset) are set to 0.

The hardware RESET pin is not affected.

J-Link_J-TraceARM-3

—e

59

60

Type 7: Reserved

Reserved reset type.

Type 8: Software, for ATMEL AT91SAM7 MCUs

The reset pin of the device is disabled by default. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work by default. For this reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the
RSTC_CR register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory
mapping register, which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect
by writing 0x4 to the RSTC_CR register located at address Oxfffffd00.

Type 9: Hardware, for NXP LPC MCUs

After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset strategy performs a reset via reset
strategy Type 1 in order to reset the CPU. It also ensures that flash is mapped to address 0 by writing the MEMMAP
register of the LPC. This reset strategy is the recommended one for all ARM 7 LPC devices.

STRATEGIES FOR CORTEX-M DEVICES

J-Link supports different specific reset strategies for the Cortex-M cores. All of the following reset strategies are
available in JTAG and in SWD mode. All of them halt the CPU after the reset.

Type 0: Normal

This is the default strategy. It works well for most Cortex-M devices. J-Link tries to reset both, core and peripherals by
setting the SYSRESETREQ & VECTRESET bits in the AIRCR. The VC_CORERESET bit is used to halt the CPU
before it executes a single instruction.

On devices that are known to have a bootloader, this bootloader is started after the core & peripherals have been reset
and stopped before trying to start the application program, thus ensuring that the bootloader (which may perform
important initialisations) has a chance to do so.

This type of RESET can fail:

One reason is that the CPU is in power down state. In this case, the reset pin is used to reset the device. If this fails as
well, then Connect-under-Reset is executed.

Other reasons why the initial reset may not work are typically shortcomings in the silicon (sometimes only in Beta
silicon). Some of these reasons are:

e Watchdog continues to run when CPU is halted
e SYSRESETREQ also reset debug unit

Type |I: Core

Only the core is reset via the VECTRESET bit. The peripherals are not affected. After setting the VECTRESET bit, J-
Link waits for the S_RESET_ST bit in the Debug Halting Control and Status Register (DHCSR) to first become high
and then low afterwards. The CPU does not start execution of the program because J-Link sets the VC_CORERESET
bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 2: ResetPin

J-Link pulls its RESET pin low to reset the core and the peripherals. This normally causes the CPU RESET pin of the
target device to go low as well, resulting in a reset of both CPU and peripherals. This reset strategy will fail if the
RESET pin of the target device is not pulled low. The CPU does not start execution of the program because J-Link sets
the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 3: Connect under Reset

J-Link connects to the target while keeping Reset active (reset is pulled low and remains low while connecting to the
target). This is the recommended reset strategy for STM32 devices. This reset strategy has been designed for the case
that communication with the core is not possible in normal mode so the VC_CORERESET bit can not be set in order
to guarantee that the core is halted immediately after reset.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e

Type 4: Reset core & peripherals, halt after bootloader

Same as type 0, but bootloader is always executed. This reset strategy has been designed for MCUs/CPUs which have
a bootloader located in ROM which needs to run at first, after reset (since it might initialize some target settings to their
reset state). When using this reset strategy, J-Link will let the bootloader run after reset and halts the target immediately
after the bootloader and before the target application is started. This is the recommended reset strategy for LPC11xx
and LPC13xx devices where a bootloader should execute after reset to put the chip into the "real" reset state.

Type 5: Reset core & peripherals, halt before bootloader

Same as Type 0, but bootloader is never executed. Not normally used, except in situations where the bootloader needs
to be debugged.

Using DCC for memory access

The ARM7/9 architecture requires cooperation of the CPU to access memory when the CPU is running (not in debug
mode). This means that memory can not normally be accessed while the CPU is executing the application program.
The normal way to read or write memory is to halt the CPU (put it into debug mode) before accessing memory. Even
if the CPU is restarted after the memory access, the real time behavior is significantly affected; halting and restarting
the CPU costs typically multiple milliseconds. For this reason, most debuggers do not even allow memory access if the
CPU is running.

Fortunately, there is one other option: DCC (Direct communication channel) can be used to communicate with the CPU
while it is executing the application program. All that is required is that the application program calls a DCC handler
from time to time. This DCC handler typically requires less than 1 ps per call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link software package and can be found
in the Program Files\IAR Systems\Embedded Workbench 5.n\arm\debugger\dcc directory of the package.

WHAT IS REQUIRED?

e An application program on the host (typ. debugger) that uses DCC, in this case C-SPY
e A target application program that regularly calls the DCC handler
e The supplied abort handler should be installed (optional)

An application program that uses DCC is JLink. exe.

TARGET DCC HANDLER

The target DCC handler is a simple C-file taking care of the communication. The function DCC_Process () needs to
be called regularly from the application program or from an interrupt handler. If a RTOS is used, a good place to call
the DCC handler is from the timer tick interrupt. In general, the more often the DCC handler is called, the faster
memory can be accessed. On most devices, it is also possible to let the DCC generate an interrupt which can be used
to call the DCC handler.

TARGET DCC ABORT HANDLER

An optional DCC abort handler (a simple assembly file) can be included in the application. The DCC abort handler
allows data aborts caused by memory reads/writes via DCC to be handled gracefully. If the data abort has been caused
by the DCC communication, it returns to the instruction right after the one causing the abort, allowing the application
program to continue to run. In addition to that, it allows the host to detect if a data abort occurred.

In order to use the DCC abort handler, 3 things need to be done:

e Place a branch to bcC_abort at address 0x10 ("vector" used for data aborts)
e Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack memory required by the handler
e Add the DCC abort handler assembly file to the application

J-Link_J-TraceARM-3 61

J-Link script files

The connection sequence of J-Link can be customized by executing a J-Link script file before the debug
communication between J-Link and the target system starts. Since some devices needs to be configured first, in order
to be able to communicate with the core, the standard auto-detection performed by J-Link when connecting to a device,
will not work for theses. In this cases a J-Link script file takes place for the standard auto-detection. The script file
allows maximum flexibility, so almost any target initialization which is necessary, can be supported.

SUPPORTED COMMANDS

The commands in a J-Link script file are categorized. Each command consists of the command category, followed by
the sub-command identifier. The following table lists all commands which are currently supported by the J-Link script
file.

You should also note the following if you are using J-Link script files for the first time:

e Every command has to be terminated by a semicolon (;)
e Strings must always be surrounded by quotation marks (")
e InJ-Link script files C-like and C++-like comments are allowed (/* */, /)

e The script file parser auto-detects if a value is a decimal value or a hexadecimal one. (Depending on if it is
preceded by 0x or not)

Command Description

JTAG commands

JTAG.IRLen Specifies the IRLen of the JTAG device which J-Link shall
communicate with.

Syntax:
JTAG.IRLen=<NumBits>;

JTAG.IRPRE Specifies the number of IR bits preceding the device J-Link
shall communicate with. For example, if a device with IRLen =
6 is closer to TDI than the device J-Link shall communicate
with, IRPRE has to be set to 6.

Syntax:
JTAG.IRPRe=<NumBits>;

JTAG.DRPRE Specifies the number of devices preceding the device J-Link
shall communicate with. For example, if one device is closer to
TDI than the device J-Link shall communicate with, DRPRE has
tobesetto I.

Syntax:
JTAG.DRPRe=<NumDevices>;
. pecifies the number o its following the device J-Link sha
TAG.IRPOST Specifies th ber of IR bits foll hed Link shall
communicate with. For example, if a device with IRLen = 6 is

closer to TDO than the device J-Link shall communicate with,
IRPOST has to be set to 6.

Syntax:
JTAG.IRPOST=<NumBits>;

JTAG.DRPOST Specifies the number of devices following the device J-Link
shall communicate with. For example, if one device is closer to
TDO than the device J-Link shall communicate with, DRPOST
has to be set to |.

Syntax:
JTAG.DRPOST=<NumBits>;

Table 22: J-Link / J-Trace pinout

IAR J-Link and IAR }J-Trace
62 User Guide J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

Command Description
JTAG.Speed Specifies which JTAG speed to use. Speed value is always set in
kHz.
Syntax:
JTAG. Speed=<Speed>;
Write rites a command to the selected device. A comman
TAG.WritelR Wi TAG d he sel dd A d

length up to 32-bits is supported at this time.

Syntax:
JTAG-WritelIR (<Cmd>) ;

JTAG.WriteDR Writes JTAG data to the selected device. Up to 64-bits of data
can be written at once.

Syntax:

JTAG.WriteDR (<NumBits>, <Data>);
JTAG.Write Writes RAW JTAG data.

Syntax:

JTAG.Write (<NumBits>, <TMSData>,

<TDIData>) ;
JTAG.ResetPin Sets or clears the nRESET pin.

Syntax:

JTAG.ResetPin=<Set|Clr>; // Can be 0|1.

JTAG.AllowTAPReset If a script file is executed TAP resets are not allowed by
default, since some devices loose their JTAG configuration if a
TAP reset is issued. For devices which allow a TAP reset, it can
be activated.

Syntax:
JTAG.AllowTAPReset=<OnOff> // Can be 0|1

DIALOG commands

DIALOG.MessageBox Shows a message box. Usually used to inform the user about
that a script file is executed.

Syntax:
DIALOG.MessageBox (<MsgString>) ;

SYS commands

SYS.Sleep Script execution stops for a given time. Time values are always
set in [ms].

Syntax:
SYS.Sleep (<Waitms>) ;

CPU commands

Table 22: J-Link / J-Trace pinout

J-Link_J-TraceARM-3

63

64

Command

Description

CPU

Selects the CPU core of the device J-Link shall communicates
with.

Syntax:
CPU=<CPUCore>;
Currently supported:
arm7

arm7tdmi
arm7tdmir3
arm7tdmird
arm7tdmis
arm7tdmisr3
arm7tdmisr4
arm9
arm9tdmis
arm920t
arm922t
arm926ejs
arm946ejs
arm966es
arm968es
armll

armll36
armll136j
armll36js
armll136jf
armll36jfs
armll56
armll76
armll1767j
armll76js
armll176jf
armll76jfs
cortex_mO0
cortex_ml
cortex_m3
cortex_m3rlp0
cortex_m3rlpl
cortex_m3r2p0
cortex_r4

Table 22: J-Link / J-Trace pinout

EXECUTING J-LINK SCRIPT FILES

In J-Link commander

When J-Link commander is started it searches for a script file called

Default.JLinkScript. If this file is found, it is executed instead of the standard auto detection of J-Link. If this file

is not present, J-Link commander behaves as before and the normal auto-detection is performed.

In debugger IDE environment

To execute a script file out of your debugger IDE, simply select the script file to execute in the Settings tab of the J-

Link control panel and click the save button (after the debug session has been started). Usually a project file for J-Link
is set by the debugger, which allows the J-Link DLL to save the settings of the control panel in this project file. After
selecting the script file restart your debug session. From now on, the script file will be executed when starting the debug

session.

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e
Command strings
The behavior of the J-Link can be customized via command strings passed to the JLinkARM.d11 which controls J-
Link. Applications such as the J-Link Commander, but also the C-SPY debugger which is part of the IAR Embedded
Workbench, allow passing one or more command strings. Command line strings can be used for passing commands to
J-Link (such as switching on target power supply), as well as customize the behavior (by defining memory regions and
other things) of J-Link. The use of command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.
LIST OF AVAILABLE COMMANDS
The table below lists and describes the available command strings.
Command Description
device Selects the target device.
DisableFlashBPs Disables the FlashPB feature.
DisableFlashDL Disables the J-Link ARM FlashDL feature.
EnableFlashBPs Enables the F1ashPB feature.
EnableFlashDL Enables the J-Link ARM FlashDL feature.
map exclude Ignore all memory accesses to specified area.
map indirectread Specifies an area which should be read indirect.
map ram Specifies location of target RAM.
map reset Restores the default mapping, which means all memory accesses are permitted.
SetAllowSimulation Enable/Disable instruction set simulation.
SetCheckModeAfterRead Enable/Disable CPSR check after read operations.
SetResetPulseLen Defines the length of the RESET pulse in milliseconds.
SetResetType Selects the reset strategy
SetRestartOnClose Specifies restart behavior on close.
SetDbgPowerDownOnClose Used to power-down the debug unit of the target CPU when the debug session is
closed.
SetSysPowerDownOnIdle Used to power-down the target CPU, when there are no transmissions between
J-Link and target CPU, for a specified timeframe.
SupplyPower Activates/Deactivates power supply over pin 19 of the JTAG connector.
SupplyPowerDefault Activates/Deactivates power supply over pin |9 of the JTAG connector
permanently.
Table 23: Available command line options
device
This command selects the target device.
Syntax
device = <DevicelID>
DeviceID has to be a valid device identifier. For a list of all available device identifiers please refer to chapter
Supported devices on page 75.
Example
device = AT91SAM7S256
DisableFlashBPs
This command disables the FlashBP feature.
Syntax
DisableFlashBPs
J-Link_J-TraceARM-3 65

DisableFlashDL

This command disables the J-Link ARM FlashDL feature.

Syntax

DisableFlashDL

EnableFlashBPs

This command enables the F1ashBP feature.

Syntax

EnableFlashBPs

EnableFlashDL

This command enables the J-Link ARM FlashDL feature.

Syntax

EnableFlashDL

map exclude

This command excludes a specified memory region from all memory accesses. All subsequent memory accesses to this
memory region are ignored.

Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire memory can be accessed; if a
memory access fails, the CPU reports this by switching to abort mode. The CPU memory interface allows halting the
CPU via a WAIT signal. On some devices, the WAIT signal stays active when accessing certain unused memory areas.
This halts the CPU indefinitely (until RESET) and will therefore end the debug session. This is exactly what happens
when accessing critical memory areas. Critical memory areas should not be present in a device; they are typically a
hardware design problem. Nevertheless, critical memory areas exist on some devices.

To avoid stalling the debug session, a critical memory area can be excluded from access: J-Link will not try to read or
write to critical memory areas and instead ignore the access silently. Some debuggers (such as IAR C-SPY) can try to
access memory in such areas by dereferencing non-initialized pointers even if the debugged program (the debuggee)
is working perfectly. In situations like this, defining critical memory areas is a good solution.

Syntax

map exclude <SAddr>-<EAddr>

Example

This is an example for the map exclude command in combination with an NXP LPC2148 MCU.
Memory map

0x00000000-0x0007FFFF On-chip flash memory

0x00080000-0x3FFFFFFF Reserved

0x40000000-0x40007FFF On-chip SRAM

0x40008000-0x7FCFFFFF Reserved

0x7FD00000-0x7FDO | FFF On-chip USB DMA RAM
0x7FD02000-0x7FD02000 Reserved

0x7FFFD000-0x7FFFFFFF Boot block (remapped from on-chip flash memory)
0x80000000-0xDFFFFFFF Reserved

0xE0000000-0xEFFFFFFF VPB peripherals

0xF0000000-0xFFFFFFFF AHB peripherals

The "problematic” memory areas are:

0x00080000-0x3FFFFFFF Reserved
0x40008000-0x7FCFFFFF Reserved

IAR J-Link and IAR }J-Trace
66 User Guide J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

0x7FD02000-0x7FD02000 Reserved
0x80000000-0xDFFFFFFF Reserved

To exclude these areas from being accessed through J-Link the map exclude command should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

map indirectread

This command can be used to read a memory area indirectly. Indirectly reading means that a small code snippet is
downloaded into RAM of the target device, which reads and transfers the data of the specified memory area to the host.
Before map indirectread can be called a RAM area for the indirectly read code snippet has to be defined. Use
therefor the map ram command and define a RAM area with a size of >= 256 byte.

Typical applications
Refer to chapter Fast GPIO bug on page 92 for an example.
Syntax

map indirectread <StartAddressOfArea>-<EndAddress>

Example

map indirectread 0x3fffc000-0x3fffcfff

map ram

This command should be used to define an area in RAM of the target device. The area must be 256-byte aligned. The
data which was located in the defined area will not be corrupted. Data which resides in the defined RAM area is saved
and will be restored if necessary. This command has to be executed before map indirectread will be called.

Typical applications
Refer to chapter Fast GPIO bug on page 92 for an example.
Syntax

map ram <StartAddressOfArea>-<EndAddressOfArea>

Example

map ram 0x40000000-0x40003fff;

map reset
This command restores the default memory mapping, which means all memory accesses are permitted.
Typical applications

Used with other "map" commands to return to the default values. The map reset command should be called before any
other "map" command is called.

Syntax

map reset

Example

map reset

SetAllowSimulation

This command can be used to enable or disable the instruction set simulation. By default the instruction set simulation
is enabled.

Syntax

SetAllowSimulation = 0 | 1

J-Link_J-TraceARM-3

—e

67

68

Example

SetAllowSimulation 1 // Enables instruction set simulation

SetCheckModeAfterRead

This command is used to enable or disable the verification of the CPSR (current processor status register) after each
read operation. By default this check is enabled. However this can cause problems with some CPUs (e.g. if invalid
CPSR values are returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0), the success of
read operations cannot be verified anymore and possible data aborts are not recognized.

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.g. if invalid CPSR values are returned). Note
that if this check is turned off (SetCheckModeAfterRead = 0), the success of read operations cannot be verified
anymore and possible data aborts are not recognized.

Syntax
SetCheckModeAfterRead = 0 | 1
Example
SetCheckModeAfterRead = 0

SetResetPulselen

This command defines the length of the RESET pulse in milliseconds. The default for the RESET pulse length is 20
milliseconds.

Syntax

SetResetPulselen = <value>

Example
SetResetPulselLen = 50

SetResetType

This command changes the reset strategy.
Typical applications

Refer to chapter Reset strategies on page 58 for additional informations about the different reset strategies.

Value Description
0 Hardware, halt after reset (normal).
1 Hardware, halt with BP@O.
2 Software, for Analog Devices ADuC7xxx MCUs.
Table 24: List of possible value for command SetResetType
Syntax
SetResetType = <value>
Example
SetResetType = 0
SetRestartOnClose

This command specifies whether the J-Link restarts target execution on close. The default is to restart target execution.
This can be disabled by using this command.

Syntax

SetRestartOnClose = 0 | 1

Example

SetRestartOnClose = 1

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Working with }J-Link and }J-Trace

SetDbgPowerDownOnClose
When using this command, the debug unit of the target CPU is powered-down when the debug session is closed.
Note:This command works only for Cortex-M3 devices
Typical applications
This feature is useful to reduce the power consumption of the CPU when no debug session is active.
Syntax
SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose
SetDbgPowerDownOnClose

1 // Enables debug power-down on close.
0 // Disables debug power-down on close.

SetSysPowerDownOnldle

When using this command, the target CPU is powered-down when no transmission between J-Link and the target CPU
was performed for a specific time. When the next command is given, the CPU is powered-up.

Note:This command works only for Cortex-M3 devices.
Typical applications
This feature is useful to reduce the power consumption of the CPU.

Syntax

SetSysPowerDownOnIdle = <value>
Note:A 0 for <value> disables the power-down on idle functionality.

Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
// transmission between J-Link and target CPU for at least 10ms

SupplyPower

This command activates power supply over pin 19 of the JTAG connector. J-Link has the V5 supply over pin 19
activated by default.

Typical applications
This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax

SupplyPower = 0 | 1

Example
SupplyPower = 1

SupplyPowerDefault

This command activates power supply over pin 19 of the JTAG connector permanently. The J-Link has the V5 supply
over pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPowerDefault = 0 | 1
Example
SupplyPowerDefault = 1

J-Link_J-TraceARM-3

69

USING COMMAND STRINGS

J-Link Commander

The J-Link command strings can be tested with the J-Link Commander. Use the command exec supplemented by one
of the command strings.

Link ARM ¥3.58c =]

SEGGER J-Link Commander U3.58c <’'7’ for help>
Compiled Jan 12 2887 12:54:38
DLL version U3.58c. compiled Jan 12 2887 12:54:35
i ﬂgL;Ek compiled Feb B89 28087 19:59:46 ARM Rev.5

UTarget = 3.3130
JTAG speed: 38 kHz
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#8: Bx4F1FAFAF
Found ARM with core Id Bx4F1FBFBF (ARM?7>
J-Link>exec map reset

J-Link>exec map exclude Bx18B88BA0B-Bx3FFFFFFF
J-Link>_

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF

IAR Embedded Workbench

The J-Link command strings can be supplied using the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog box and select Debugger.

Options for node "Project™

Category: Factary Settings

General Options

C/C++ Compiler Setup l Download] Extra Dptions] F'Iugins]
Azzembler
Custamn Build Diriver ¥ Bunto
Build &ctions i -
X J-LinkA)-Trace = mait
Linker
: Debugger
Simulator Setup macros
Angel S
I4R ROM-moritor I Use macro file
J-Linkd)-Trace
LI FTDI | J
Macraigor Device description file
RDI .
Thitd-Patty Driver [Overide default

| B

()8 | Cancel

IAR J-Link and IAR J-Trace
70 User Guide J-Link_J-TraceARM-3

Working with J-Link and J-Trace —e

On the Extra Options page, select Use command line options.
Enter --jlink_exec_command "<CommandLineOption>" in the textfield, as shown in the screenshot below. If
more than one command should be used separate the commands with semicolon.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Aszzembler
Cusztomn Build
Build &ctions
Linker
Debuager ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

Simulator

Angel

14R R OM-monitor
J-Linkd)-Trace
LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

Switching off CPU clock during debug

We recommend not to switch off CPU clock during debug. However, if you do, you should consider the following:
Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator, which means the TAP controller
and ICE-Breaker continue to be accessible even if the CPU has no clock.

Therefore, switching off CPU clock during debug is normally possible if the CPU clock is periodically (typically using
a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a three-stage synchronizer, which
is fed by clock signal provided by the emulator, which means that the TAP controller and ICE-Breaker are not
accessible if the CPU has no clock.

If the RTCK signal is provided, adaptive clocking function can be used to synchronize the JTAG clock (provided by the
emulator) to the processor clock. This way, the JTAG clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possible if the CPU clock is periodically
(typically using a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop
at the first instruction in the ISR (typically at address 0x18).

Cache handling

Most ARM systems with external memory have at least one cache. Typically, ARM7 systems with external memory
come with a unified cache, which is used for both code and data. Most ARM9 systems with external memory come
with separate caches for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware architecture.

CACHE COHERENCY

When debugging or otherwise working with a system with processor with cache, it is important to maintain the cache(s)
and main memory coherent. This is easy in systems with a unified cache and becomes increasingly difficult in systems
with hardware architecture. A write buffer and a D-Cache configured in write-back mode can further complicate the
problem.

J-Link_J-TraceARM-3 71

ARMD chips have no hardware to keep the caches coherent, so that this is the responsibility of the software.

CACHE CLEAN AREA

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does not have to
download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a cache clean area is not
required.

CACHE HANDLING OF ARM7 CORES

Because ARM7 cores have a unified cache, there is no need to handle the caches during debug.

CACHE HANDLING OF ARM9 CORES

ARMDO cores with cache require J-Link / J-Trace to handle the caches during debug. If the processor enters debug state
with caches enabled, J-Link / J-Trace does the following:

When entering debug state
J-Link / J-Trace performs the following:

e it stores the current write behavior for the D-Cache

e it selects write-through behavior for the D-Cache.
When leaving debug state
J-Link / J-Trace performs the following:

e it restores the stored write behavior for the D-Cache

e it invalidates the D-Cache.

Note:The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.

IAR J-Link and IAR }J-Trace
72 User Guide J-Link_J-TraceARM-3

Flash download and flash
breakpoints

This chapter describes how flash download and flash breakpoints with J-Link work. In addition to that it contains

a list of supported microcontrollers for J-Link.

Introduction

The JLinkARM.d11 is able to use the flash download and flash breakpoints features. Only the flash breakpoints feature
requires an additional license. For more information about flash download and flash breakpoints, please refer to
Segger’s J-Link RDI User s Guide (UM08004), chapter Flash download and chapter Breakpoints in flash memory.

Licensing
Some J-Links are available with device-based licenses for flash download or flash breakpoints, but the standard J-Link
does not come with a built-in license. You will need to obtain a license for every J-Link. For more information about

the different license types, please refer to License types on page 25.
For a complete list of devices which are supported by the device-based licenses, please refer to Device list on page 26.

Entering a license
The easiest way to enter a license is the following:

Open the J-Link control panel window, go to the General tab and choose License.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [329V |—
208
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

J-Link_J-TraceARM-3 73

Now the J-Link ARM license manager will open and show all licenses, both key-based and built-in licenses of J-Link.

J-Link ARM License management E

Licenses installed on PC:

Serial number | Feature | Expires |

Licenses in emulatar:

Serial number | Features |
|

Currently active licenses I

Add license | Delete license |

Now choose Add license to add one or more new licenses. Enter your license(s) and choose OK. Now the licenses
should have been added.

J-Link ARM License management E

Licenses installed on PC:

Serial number | Feature | Expires |
FlashBP Mewver
FlashDL Mewver

Licenses in emulatar:

Serial number | Features |

Currently active licenses |FlazhBP, FlashDL

Delete license QK |

Add license

IAR J-Link and IAR }J-Trace
74 User Guide J-Link_J-TraceARM-3

Flash download and flash breakpoints

Supported devices

The following table lists the microcontrollers for which flash download and flash breakpoints are available.

Note:Only the devices listed below are currently supported with the flash breakpoint and flash download features. Both
features currently work on the internal flash of the devices only. You need to make sure that the device you are using

is supported.

The device is selected by its device identifier.

Manufacturer

Device ID

Devices

Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices
Analog Devices

Analog Devices

Analog Devices**

Analog Devices

Analog Devices

Analog Devices™*

Analog Devices**

Analog Devices
Analog Devices
Analog Devices
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**
Atmel**

Atmel®*

ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7028x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7034
ADuC7038
ADuC7060
ADuC7061
ADuC7062
ADuC7128
ADuC7129
ADuC7229x126
AT91FR40162
AT91SAM3NIA
AT91SAM3N2A
AT91SAM3N4A
AT91SAM3NIB
AT91SAM3N2B
AT91SAM3N4B
AT91SAM3NIC
AT91SAM3N2C
AT91SAM3N4C
AT9I1SAM3SIA
AT9I1SAM3S2A
AT91SAM3S4A
AT91SAM3SI1B
AT91SAM3S2B
AT91SAM3S4B
AT91SAM3SIC

ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7028x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7034
ADuC7038
ADuC7060
ADuC7061
ADuC7062
ADuC7128
ADuC7129
ADuC7229x126
AT91FR40162
AT9ISAM3NIA
AT9ISAM3N2A
AT9ISAM3N4A
AT9ISAM3NIB
AT9I1SAM3N2B
AT91SAM3N4B
AT9ISAM3NIC
AT9ISAM3N2C
AT91SAM3N4C
AT9ISAM3SIA
AT9ISAM3S2A
AT9ISAM3S4A
AT9ISAM3SIB
AT91SAM3S2B
AT91SAM3S4B
AT9ISAM3SIC

Table 25: Supported microcontrollers

J-Link_J-TraceARM-3

—e

75

76

Manufacturer

Device ID

Devices

Atmel**
Atmel**

Atmel

Atmel**
Atmel**
Atmel**
Atmel**
Atmel**

Atmel

Atmel**
Atmel**

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel

Atmel**
Atmel**
Atmel**
Ember**
Ember**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro™*
Energy Micro**
Energy Micro™*
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro**
Energy Micro™*

Energy Micro**

AT91SAM3S2C
AT91SAM354C
AT9ISAM3UIC
AT91SAM3U2C
AT9ISAM3U4C
AT9I1SAM3UIE
AT9ISAM3U2E
AT91SAM3U4E
AT91SAM7A3
AT91SAM7L64
AT91SAM7LI128
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT9I1SAM7S128
AT91SAM7S256
AT9I1SAM7S512
AT91SAM7SE32
AT9ISAM7SE256
AT91SAM7SES 12
AT91SAM7X128
AT91SAM7X256
AT91SAM7X512
AT91SAM7XCI128
AT9ISAM7XC256
AT91SAM7XC512
AT91SAMIXEI28
AT91SAMIXE256
AT91SAMIXES 12
EM351

EM357
EFM32G200F16
EFM32G200F32
EFM32G200F64
EFM32G210F128
EFM32G230F32
EFM32G230F64
EFM32G230F128
EFM32G280F32
EFM32G280F64
EFM32G280F128
EFM32G290F32
EFM32G290F64
EFM32G290F128
EFM32G840F32
EFM32G840F64
EFM32G840F 128

AT91SAM3S2C
AT91SAM3S4C
AT9ISAM3UIC
AT91SAM3U2C
AT91SAM3U4C
AT9ISAM3UIE
AT9I1SAM3U2E
AT91SAM3U4E
AT9ISAM7A3
AT91SAM7L64
AT91SAM7L128
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT9I1SAM7S128
AT91SAM7S256
AT9I1SAM7S512
AT91SAM7SE32
AT91SAM7SE256
AT91SAM7SE512
AT91SAM7X128
AT91SAM7X256
AT9ISAM7X512
AT91SAM7XCI128
AT91SAM7XC256
AT91SAM7XC512
AT91SAM9XEI28
AT91SAM9IXE256
AT91SAM9XES 12
EM351

EM357
EFM32G200F16
EFM32G200F32
EFM32G200F64
EFM32G210F128
EFM32G230F32
EFM32G230F64
EFM32G230F|28
EFM32G280F32
EFM32G280F64
EFM32G280F 128
EFM32G290F32
EFM32G290F64
EFM32G290F|28
EFM32G840F32
EFM32G840F64
EFM32G840F 128

Table 25: Supported microcontrollers

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Flash download and flash breakpoints —e

Manufacturer Device ID Devices

Energy Micro™* EFM32G880F32 EFM32G880F32
Energy Micro™* EFM32G880F64 EFM32G880F64
Energy Micro™* EFM32G880F|28 EFM32G880F 128
Energy Micro™* EFM32G890F32 EFM32G890F32
Energy Micro™* EFM32G890F64 EFM32G890F64
Energy Micro™* EFM32G890F 128 EFM32G890F 128
Freescale* MAC7101 MAC7101
Freescale* MAC7106 MAC7106
Freescale* MAC7111 MAC7I11
Freescale* MAC7112 MAC7112
Freescale* MAC7116 MAC7116
Freescale* MAC7121 MAC7121
Freescale* MAC7122 MAC7122
Freescale* MAC7126 MAC7126
Freescale* MAC7131 MAC7131
Freescale* MAC7136 MAC7136
Freescale* MAC7141 MAC7141
Freescale* MAC7142 MAC7142
Itron™®* TRIFECTA TRIFECTA
Luminary LM3S101 LM3S101
Luminary LM3S102 LM3S102
Luminary LM3S301 LM3S301
Luminary LM3S310 LM3S310
Luminary LM3S315 LM3S315
Luminary LM3S316 LM3S316
Luminary LM3S317 LM3S317
Luminary LM3S328 LM3S328
Luminary LM3S601 LM3S601
Luminary LM3S610 LM3S610
Luminary LM3S61 1 LM3S61 |
Luminary LM3S612 LM3S612
Luminary LM3S613 LM3S613
Luminary LM3S615 LM3S615
Luminary LM3S617 LM3S617
Luminary LM3S618 LM3S618
Luminary LM3S628 LM3S628
Luminary LM3S801 LM3S801
Luminary LM3S81 1 LM3S81 |
Luminary LM3S812 LM3S812
Luminary LM3S815 LM3S815
Luminary LM3S817 LM3s817
Luminary LM3S818 LM3S818
Luminary LM3S828 LM3S828
Luminary LM3S2110 LM3S2110
Luminary LM3S2139 LM3S2139
Luminary LM3S2410 LM3S2410
Luminary LM3S2412 LM3S2412

Table 25: Supported microcontrollers

J-Link_J-TraceARM-3 77

Manufacturer Device ID Devices

Luminary LM3S52432 LM3S2432
Luminary LM3S2533 LM3S2533
Luminary LM352620 LM3S2620
Luminary LM352637 LM3S2637
Luminary LM3S2651 LM3S2651
Luminary LM3S2730 LM3S2730
Luminary LM3S2739 LM3S2739
Luminary LM3S52939 LM352939
Luminary LM352948 LM352948
Luminary LM352950 LM352950
Luminary LM352965 LM3S2965
Luminary** LM3S3739 LM3S3739
Luminary** LM3S3748 LM3S3748
Luminary** LM3S3749 LM3S3749
Luminary** LM3S3826 LM3S3826
Luminary** LM3S3)26 LM3S3)26
Luminary** LM3S3N26 LM3S3N26
Luminary** LM3S3W26 LM3S3W26
Luminary** LM3S3Z726 LM3S3Z726
Luminary LM3S6100 LM3S6100
Luminary LM3S6110 LM3S6110
Luminary LM3S6420 LM3S56420
Luminary LM3S6422 LM3S6422
Luminary LM3S6432 LM3S6432
Luminary LM3S6610 LM3S6610
Luminary LM3S6633 LM3S6633
Luminary LM3S6637 LM3S6637
Luminary LM3S6730 LM3S6730
Luminary LM3S6918 LM3S6918
Luminary LM3S6938 LM356938
Luminary LM3S6952 LM3S6952
Luminary LM3S6965 LM3S6965
Luminary** LM3S8530 LM3S8530
Luminary** LM358538 LM358538
Luminary** LM3S8630 LM3S8630
Luminary** LM3s8730 LM3s8730
Luminary** LM3S8733 LM3S8733
Luminary** LM3s8738 LM3s8738
Luminary** LM3S8930 LM3S8930
Luminary** LM358933 LM358933
Luminary** LM358938 LM358938
Luminary** LM358962 LM358962
Luminary** LM3S8971 LM3S8971
Luminary** LM359790 LM359790
Luminary** LM3S59792 LM3S9792
Luminary** LM359997 LM359997
Luminary** LM3S9B90 LM3S9B90

Table 25: Supported microcontrollers

IAR J-Link and IAR }J-Trace
78 User Guide J-Link_J-TraceARM-3

Flash download and flash breakpoints

Manufacturer Device ID Devices
Luminary** LM3S9B92 LM3S9B92
Luminary** LM3S9B95 LM3S9B95
Luminary** LM3S9B96 LM3S9B96
Luminary** LM3S9L97 LM3S9L97
NXP#* LPCIII1 LPCIIII
NXP** LPCI113 LPCI113
NXP#* LPCI31I1 LPCI3I1I
NXP** LPCI313 LPCI313
NXP#* LPC1342 LPC1342
NXP** LPCI1343 LPC1343
NXP#* LPCI1751 LPCI1751
NXP** LPCI1752 LPCI1752
NXP#* LPC1754 LPC1754
NXP** LPCI1756 LPCI1756
NXP#* LPC1758 LPC1758
NXP** LPCI1764 LPCI1764
NXP#* LPCI1765 LPCI1765
NXP** LPCI1766 LPCI1766
NXP#* LPC1768 LPC1768
NXP LPC2101 LPC2101
NXP LPC2102 LPC2102
NXP LPC2103 LPC2103
NXP LPC2104 LPC2104
NXP LPC2105 LPC2105
NXP LPC2106 LPC2106
NXP LPC2109 LPC2109
NXP LPC21 14 LPC21 14
NXP LPC2119 LPC2119
NXP LPC2124 LPC2124
NXP LPC2129 LPC2129
NXP LPC2131 LPC2131
NXP LPC2132 LPC2132
NXP LPC2134 LPC2134
NXP LPC2136 LPC2136
NXP LPC2138 LPC2138
NXP LPC214I LPC2141
NXP LPC2142 LPC2142
NXP LPC2144 LPC2144
NXP LPC2146 LPC2146
NXP LPC2148 LPC2148
NXP LPC2194 LPC2194
NXP LPC2212 LPC2212
NXP LPC2214 LPC2214
NXP LPC2292 LPC2292
NXP LPC2294 LPC2294
NXP LPC2364 LPC2364
NXP#* LPC2365 LPC2365

Table 25: Supported microcontrollers

J-Link_J-TraceARM-3

—e

79

Manufacturer Device ID Devices

NXP LPC2366 LPC2366
NXP** LPC2367 LPC2367

NXP LPC2368 LPC2368
NXP** LPC2377 LPC2377

NXP LPC2378 LPC2378

NXP LPC2387 LPC2387

NXP LPC2388 LPC2388
NXP** LPC2458 LPC2458

NXP LPC2468 LPC2468

NXP LPC2478 LPC2478
NXP** LPC2917 LPC2917
NXP** LPC2919 LCP2919
NXP**¥ LPC2927 LPC2927
NXP** LPC2929 LPC2929
NXP* PCF87750 PCF87750
NXP* SJA2010 SJA2010

NXP* SJA2510 SJA2510

OKI ML67Q4002 ML67Q4002
OKI ML67Q4003 ML67Q4003
OKI ML67Q4050 ML67Q4050
OKI ML67Q4051 ML67Q4051
OKI ML67Q4060 ML67Q4060
OKI ML67Q4061 ML67Q4061
Samsung* S3F445HX S3F445HX

ST STM32FI0ICé STM32F101Cé
ST STM32F101C8 STM32F101C8
ST STM32F101CB STM32F101CB
ST STM32FI10IR6 STM32FI0IR6
ST STM32FI10IR8 STM32FI0IRS8
ST STM32FI0IRB STM32FI0IRB
ST STM32FI0IRC STM32FI0IRC
ST STM32FI0IRD STM32FI0IRD
ST STM32FI0IRE STM32FI0IRE
ST STM32F101Té STM32FI10ITé
ST STM32F101T8 STM32FI0IT8
ST STM32F101V8 STM32F101V8
ST STM32F101VB STM32FI0IVB
ST STM32F101VC STM32F10IVC
ST STM32F101VD STM32FI0IVD
ST STM32FI101VE STM32FI0IVE
ST STM32F101ZC STM32F101ZC
ST STM32F101ZD STM32F101ZD
ST STM32FI01ZE STM32FI01ZE
ST STM32F102Cé STM32F102Cé
ST STM32F102C8 STM32F102C8
ST STM32F102CB STM32F102CB
ST STM32F103Cé STM32F103Cé

Table 25: Supported microcontrollers

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-3

Flash download and flash breakpoints

Manufacturer Device ID Devices

ST STM32F103C8 STM32F103C8
ST STM32F103CB STM32F103CB
ST STM32F103R6 STM32F103R6
ST STM32F103R8 STM32F103R8
ST STM32FI103RB STM32F103RB
ST STM32FI103RC STM32FI103RC
ST STM32FI103RD STM32F103RD
ST STM32F103RE STM32FI103RE
ST STM32F103T6 STM32F103T6
ST STM32F103T8 STM32F103T8
ST STM32F103V8 STM32F103V8
ST STM32F103VB STM32F103VB
ST STM32F103VC STM32F103VC
ST STM32F103VD STM32F103VD
ST STM32F103VE STM32F103VE
ST STM32F103ZC STM32F103ZC
ST STM32F103ZD STM32F103ZD
ST STM32FI103ZE STM32F103ZE
ST STR710FZI STR7I10FZI

ST STR710FZ2 STR710FZ2

ST STR711FRO STR711FRO
ST STR7I11FRI STR711FRI

ST STR711FR2 STR711FR2
ST STR712FRO STR712FRO

ST STR7I12FRI STR712FR1

ST STR712FR2 STR712FR2

ST STR715FRO STR715FRO

ST STR730FZI STR730FZI

ST STR730FZ2 STR730FZ2
ST STR731FVO STR731FVO

ST STR731FVI STR731FVI

ST STR731FV2 STR731FV2

ST STR735FZI STR735FZI

ST STR735FZ2 STR735FZ2
ST STR736FV0 STR736FV0
ST STR736FV1 STR736FV1

ST STR736FV2 STR736FV2
ST STR750FV0 STR750FV0
ST STR750FVI STR750FVI

ST STR750FV2 STR750FV2
ST STR751FRO STR751FRO

ST STR751FRI STR751FRI

ST STR751FR2 STR751FR2

ST STR752FR0O STR752FR0O
ST STR752FR1 STR752FR1

ST STR752FR2 STR752FR2
ST STR755FRO STR755FRO

Table 25: Supported microcontrollers

J-Link_J-TraceARM-3

—e

81

Manufacturer Device ID Devices

ST STR755FRI STR755FR 1

ST STR755FR2 STR755FR2

ST STR755FV0 STR755FV0

ST STR755FVI STR755FVI

ST STR755FV2 STR755FV2

ST STR910FAM32 STR910FAM32
ST STR9I0FAW32 STR910FAW32
ST STR9I10FAZ32 STR9I10FAZ32
ST STR9I1FAM42 STR911FAM42
ST STR9I1FAM44 STR911FAM44
ST STR9I1FAM46 STR911FAM46
ST STR9I1FAM47 STR911FAM47
ST STR9I IFAW42 STR91 1FAW42
ST STR9I IFAW44 STR911FAW44
ST STR9I IFAW46 STR91 1FAW46
ST STR9I IFAW47 STR911FAW47
ST STRII1FM32 STR9I11FM32
ST STR9I1FM42 STR9I11FM42
ST STR9I1FM44 STR911FM44
ST STRIIIFW32 STROI1FW32
ST STRII1FW42 STR9I11FW42
ST STR9I1FW44 STR9I11FW44
ST STR9I12FAW32 STR912FAW32
ST STR912FAW42 STR912FAW42
ST STR9I12FAW44 STR912FAW44
ST STR912FAW46 STR912FAW46
ST STR9I12FAW47 STR912FAW47
ST STR912FAZ42 STR912FAZ42
ST STR9I12FAZ44 STR912FAZ44
ST STR912FAZ46 STR912FAZ46
ST STR9I12FAZ47 STR912FAZ47
ST STR912FM32 STR912FM32
ST STR912FM42 STR912FM42
ST STR912FM44 STR912FM44
ST STR9I12FW32 STR9I12FW32
ST STR912FW42 STR912FW42
ST STR912FW44 STR912FW44
TI TMS470R 1 A64 TMS470R 1 A64
TI TMS470R1A128 TMS470R1A128
TI TMS470R1A256 TMS470R1A256
TI TMS470R1A288 TMS470R1A288
TI TMS470R 1 A384 TMS470R1A384
TI TMS470R1B512 TMS470R1B512
TI TMS470R1B768 TMS470R1B768
TI TMS470RI1BIM TMS470R1BIM
TI TMS470R 1 VF288 TMS470R 1 VF288
TI TMS470R 1 VF688 TMS470R 1VF688

Table 25: Supported microcontrollers

IAR J-Link and IAR }J-Trace

82 User Guide J-Link_J-TraceARM-3

Flash download and flash breakpoints

Manufacturer Device ID Devices
TI TMS470R | VF689 TMS470R 1 VF689
Toshiba** TMPM330FDFG TMPM330FDFG

Table 25: Supported microcontrollers

*Supported by J-Flash only.

**Not supported by J-Link ARM RDI

Using flash download and flash breakpoints

The J-Link ARM flash download and flash breakpoints features can be used by IAR Embedded Workbench.

IAR EMBEDDED WORKBENCH

To use the J-Link FlashBP with IAR Embedded Workbench is quite simple:

First, choose the right device in the project settings if not already done. The device settings can be found at Project-
>Options->General Options->Target.

Options for node “at91sam7s-ek™ E
Category:

General Options
CiC++ Compiler
Assembler
Cubput Converter
Customn Build
Build Actions
Linker
Debugger

Sirmulator

Angel

GDE Server

IAR. ROM-monitar
J-Linkj1-Trace
LMI FTDT
Macraigor

ROI

Third-Party Driver

Target | Dutputl Library Eonfigurationl Library Options | MISRA-C

— Processor wariant

" Coe |ARMPTDMI v
@ Device [Mmel atd1sam7s256 E"l
~ Endian made ERLI
& Litle INone vl
" Big
&+ BEZZ
I BES

Cancel

J-Link_J-TraceARM-3

83

To use J-Link ARM FlashDL the IAR flashloader has to be disabled (the F1ashBP feature can also be used when
IAR flashloader is enabled). To disable the IAR flashloader the checkbox Use flash loader(s) at Project->Options-
>Debugger->Download has to be disabled, as shown below.

Options for node “at91sam7s-ek™ E

Categony: Factory Settings |

General Options
CiC++ Compiler

Assembler
Qutput Corverter Setup Download | Extra Options I Flugins I
Custom Buid [~ Attach to program
Build Actions
Linker Wi ok
™ Suppress dowrload
Sirmulator
angel ™ Use flash loader(s)
GDE Server

IAR ROM-monitor 0100000, [default). Edit |

J-Linkj1-Trace
LMI FTDT
Macraigor

ROI

Third-Party Driver

If you use the IAR project for the first time, the use of 7-Link ARM FlashDL and FlashBPs is set to Auto, which
is the default value. For more information about different configurations for 7-Link ARM FlashDL and FlashBPs
refer to Settings on page 54. Now you can start the debug session. If you run this project for the first time a settings file
is created in which the configuration of J-Link ARM FlashDL and FlashBPs is saved. This settings file is created
for every project configuration (for example Debug_RAM, Debug_FLASH), so you can save different J-Link ARM
FlashDL and FlashBP configurations for different project configurations. When the debug session starts, you should
see the selected target in the Device tab of the J-Link status window. When the debug session is running you can modify
the settings regarding J-Link ARM FlashDL and FlashBPs, in the Settings tab and save them to the settings file.

3, I-Link ARM [_ [=]

General Seftings | BreakMatchI Lag I CPU Hegsl Target Powerl Sty I

M Flash download M Flash breakpoint
* Auto | License found * Auto | License found
 On ¥ Skip download on CRC match On I~ Show info windav during
 Off W Weiify download Off program
IEnabIed, 10272 bytes downloaded Enabled

I~ Overide device selection

W Allow caching of flash contents (On)

v Allow instucti b simulati . |
[+ Allow instruction set simulation [Ep——r—

" Location of config file

IEI: AToolChARNWARM_W520_betad024%4F kyexamplesiatmeliatd] zam7 z-ekgetting-started-projectie

|Ready | | 4

Currently changes in this tab will take effect next time the debug session is started.

IAR J-Link and IAR }J-Trace
84 User Guide J-Link_J-TraceARM-3

Device specifics

This chapter gives some additional information about specific devices.

Analog Devices

J-Link has been tested with the following MCUs from Analog Devices, but should work with any ARM7/9 and Cortex-
M3 device:
ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7060
ADuC7128
ADuC7129
ADuC7229x126

ADUC7XXX
All devices of this family are supported by J-Link.

Software reset

A special reset strategy has been made available for Analog Devices ADuC7xxx MCUs. This special reset strategy is
a software reset. "Software reset" means basically no reset, just changing the CPU registers such as PC and CPSR.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:
e The CPU is halted

e A software reset sequence is downloaded to RAM

e A breakpoint at address 0 is set

e The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU and peripherals and halts the CPU
before executing instructions of the user program. It is the recommended reset sequence for Analog Devices
ADuC7xxx MCUs and works with these devices only.

This information is applicable to the following devices:

e Analog ADuC7020x62

e Analog ADuC7021x32

J-Link_J-TraceARM-3

Analog ADuC7021x62
Analog ADuC7022x32
Analog ADuC7022x62
Analog ADuC7024x62
Analog ADuC7025x32
Analog ADuC7025x62
Analog ADuC7026x62
Analog ADuC7027x62
Analog ADuC7030
Analog ADuC7031
Analog ADuC7032
Analog ADuC7033
Analog ADuC7128
Analog ADuC7129
Analog ADuC7229x126

ATMEL

J-Link has been tested with the following ATMEL devices, but should work with any ARM7/9 and Cortex-M3 device:

AT91SAMT7A3
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT91SAM7S128
AT91SAM7S256
AT91SAM7S512
AT91SAM7SE32
AT91SAM7SE256
AT91SAM7SES12
AT9ISAMT7X128
AT9ISAM7X256
AT91SAM7X512
AT9ISAM7XC128
AT91SAMT7XC256
AT9ISAM7XC512
AT91RM9200
AT91SAMO9260
AT91SAMI261
AT91SAMO9262
AT91SAM9263

AT91SAM7
All devices of this family are supported by J-Link.

Reset strategy

The reset pin of the device is per default disabled. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work per default. For this reason a special reset strategy has been made available.

IAR J-Link and IAR }J-Trace
86 User Guide J-Link_J-TraceARM-3

Device specifics

Itis recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address Oxfffffd00.

This information is applicable to the following devices:

e AT91SAMTS (all devices)

e AT91SAMTSE (all devices)

e AT91SAM7X (all devices)

e AT91SAM7XC (all devices)

o AT91SAMT7A (all devices)

Memory mapping

Either flash or RAM can be mapped to address 0. After reset flash is mapped to address 0. In order to map RAM to
address 0, a 1 can be written to the RSTC_CR register. Unfortunately, this remap register is a toggle register, which
switches between RAM and flash with every time bit zero is written.

In order to achieve a defined mapping, there are two options:
Use the software reset described above.
Test if RAM is located at 0 using multiple read/write operations and testing the results.

Clearly 1. is the easiest solution and is recommended.

This information is applicable to the following devices:
o AT91SAMTS (all devices)

o AT91SAMTSE (all devices)

o AT91SAMT7TX (all devices)

o AT9ISAMTXC (all devices)

o AT91SAMT7TA (all devices)

Recommended init sequence

In order to work with an ATMEL AT91SAMY7 device, it has to be initialized. The following paragraph describes the
steps of an init sequence. An example for different software tools, such as J-Link GDB Server, IAR Workbench and
RDI, is given.

Set JTAG speed to 30kHz

Reset target

Perform peripheral reset

Disable watchdog

Initialize PLL

Use full JTAG speed

J-Link_J-TraceARM-3

—e

87

Example

/***
*

* _Init()
*/
_Init() {
__emulatorSpeed(30000) ; // Set JTAG speed to 30 kHz
__writeMemory32 (0xA5000004, 0OXFFFFFDOO, "Memory") ; // Perform peripheral reset
__sleep(20000) ;
__writeMemory32 (0x00008000, 0OXFFFFFD44, "Memory") ; // Disable Watchdog
__sleep(20000) ;
__writeMemory32 (0x00000601, 0OXFFFFFC20, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x10191c05, 0XFFFFFC2C, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x00000007, 0XFFFFFC30, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x002£0100, OXFFFFFF60, "Memory") ; // Set 1 wait state for
_ _sleep(20000) ; // flash (2 cycles)
__emulatorSpeed (12000000) ; // Use full JTAG speed
}

/***
*

* execUserReset ()

*/

execUserReset () {
__message "execUserReset()";
_Init();

}

/***
*

* execUserPreload()

*/

execUserPreload () {
__message "execUserPreload()";
_Init();

}

AT9I1SAM9

These devices are based on ARM926EJ-S core. All devices of this family are supported by J-Link.

JTAG settings

We recommend using adaptive clocking.

This information is applicable to the following devices:
e AT91RM9200
e AT91SAM9260
e AT91SAM9261
e AT91SAM9262
e AT91SAM9263

Freescale
J-Link has been tested with the following Freescale devices, but should work with any ARM7/9 and Cortex-M3 device:

MAC7101
MAC7106
MACT7111
MAC7112
MACT7116
MAC7121
MACT7122

IAR J-Link and IAR }J-Trace
88 User Guide J-Link_J-TraceARM-3

MAC7I1X

MACT7126
MACT7131
MAC7136
MACT7141
MAC7142

All devices of this family are supported by J-Link.

Device specifics

Luminary Micro

J-Link has been tested with the following Luminary Micro devices, but should work with any ARM7/9 and Cortex-M3
device:

LM3S101
LM3S102
LM3S301
LM3S310
LM38S315
LM3S316
LM3S317
LM3S328
LM3S601
LM3S610
LM3S611
LM3S612
LM3S613
LM3S615
LM3S617
LM3S618
LM3S628
LM3S801
LM3S811
LM3S812
LM3S815
LM3S817
LM3S818
LM3S828
LM3S2110
LM3S2139
LM3S52410
LM3S2412
LM352432
LM3S2533
LM3S2620
LM3S2637
LM3S2651
LM3S2730
LM3S2739

J-Link_J-TraceARM-3

—e

89

LM3S2939
LM3S52948
LM3S2950
LM3S2965
LM3S6100
LM3S56110
LM3S6420
LM356422
LM3S6432
LM356610
LM3S6633
LM3S56637
LM3S6730
LM3S56938
LM3S6952
LM3S6965

UNLOCKING LM3SXXX DEVICES

If your device has been "locked" accidentially (e.g. by bad application code in flash which mis-configures the PLL)
and J-Link can not identify it anymore, there is a special unlock sequence which erases the flash memory of the device,
even if it can not be identified. This unlock sequence can be send to the target, by using the "unlock" comnmand in J-
Link Commander.

STELLARIS LM3S100 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S300 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S600 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S800 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S2000 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6100 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

IAR J-Link and IAR }J-Trace
90 User Guide J-Link_J-TraceARM-3

Device specifics —e

STELLARIS LM3S6400 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6700 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6900 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

NXP

J-Link has been tested with the following NXP devices, but should work with any ARM7/9 and Cortex-M3 device:

LPCI111
LPCI1113
LPCI1311
LPC1313
LPC1342
LPC1343
LPC1751
LPC1751
LPC1752
LPC1754
LPC1756
LPC1758
LPC1764
LPC1765
LPC1766
LPC1768
LPC2101
LPC2102
LPC2103
LPC2104
LPC2105
LPC2106
LPC2109
LPC2114
LPC2119
LPC2124
LPC2129
LPC2131
LPC2132
LPC2134
LPC2136
LPC2138
LPC2141

J-Link_J-TraceARM-3 91

LPC2142
LPC2144
LPC2146
LPC2148
LPC2194
LPC2212
LPC2214
LPC2292
LPC2294
LPC2364
LPC2366
LPC2368
LPC2378
LPC2468
LPC2478
LPC2880
LPC2888
LPC2917
LPC2919
LPC2927
LPC2929
PCF87750
SJA2010
SJA2510

LPC

Fast GPIO bug

The values of the fast GPIO registers can not be read direct via JTAG from a debugger. The direct access to the registers
corrupts the returned values. This means that the values in the fast GPIO registers normally can not be checked or
changed from a debugger.

Solution / Workaround

J-Link supports command strings which can be used to read a memory area indirect. Indirectly reading means that a
small code snippet will be written into RAM of the target device, which reads and transfers the data of the specified
memory area to the debugger. Indirectly reading solves the fast GPIO problem, because only direct register access
corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link command map ram and define
afterwards the memory area which should be read indirect with the command map indirectread to use the
indirectly reading feature of J-Link. Note that the data in the defined RAM area is saved and will be restored after using
the RAM area.

This information is applicable to the following devices:

LPC2101

LPC2102

LPC2103

LPC213x/01

LPC214x (all devices)

LPC23xx (all devices)

LPC24xx (all devices)

IAR J-Link and IAR }J-Trace
92 User Guide J-Link_J-TraceARM-3

Device specifics

Example

J-Link commands line options can be used for example with the C-Spy debugger of the IAR Embedded Workbench.
Open the Project options dialog and select Debugger. Select Use command line options in the Extra Options tap
and enter in the textfield --j1ink_exec_command "map ram 0x40000000-0x40003fff; map indirectread
0x3fffc000-0x3fffcfff; map exclude 0x3fffd000-0x3fffffff; " as shown in the screenshot below.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Azzembler .

Cusztomn Build
Build &ctions
Linker
Debuager ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

With these additional commands are the values of the fast GPIO registers in the C-Spy debugger correct and can be
used for debugging. For more information about J-Link command line options refer to subchapter Command strings on
page 65.

Reset (Cortex-M3 based devices)

For Cortex-M3 based NXP LPC devices the reset itself does not differ from the one for other Cortex-M3 based devices:
After the device has been reset, the core is halted before any instruction is performed. For the Cortex-M3 based LPC
devices this means the CPU is halted before the bootloader which is mapped at address O after reset.

The user should write the memmap register after reset, to ensure that user flash is mapped at address 0. Moreover, the
user have to correct the Stack pointer (R13) and the PC (R15) manually, after reset in order to debug the application.

OKI

J-Link has been tested with the following OKI devices, but should work with any ARM7/9 and Cortex-M3 device:

ML67Q4002
ML67Q4003
ML67Q4050
ML67Q4051
ML67Q4060
ML67Q4061

ML67Q40X
All devices of this family are supported by J-Link.

J-Link_J-TraceARM-3

—e

93

ST Microelectronics

J-Link has been tested with the following ST Microelectronics devices, but should work with any ARM7/9 and Cortex-
M3 device:
STR710FZ1
STR710FZ2
STR711FRO
STR711FR1
STR711FR2
STR712FRO
STR712FR1
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FV0
STR731FV1
STR731FV2
STR735FZ1
STR735FZ2
STR736FV0
STR736FV1
STR736FV2
STR750FV0
STR750FV1
STR750FV2
STR751FRO
STR751FR1
STR751FR2
STR752FRO
STR752FR1
STR752FR2
STR755FRO
STR755FR1
STR755FR2
STR755FV0
STR755FV1
STR755FV2
STR911FM32
STR911FM44
STRO11FW32
STR911FW44
STR912FM32
STR912FM44
STR912FW32
STR912FW44
STM32F101C6
STM32F101C8
STM32F101R6

IAR J-Link and IAR }J-Trace
94 User Guide J-Link_J-TraceARM-3

Device specifics

STM32F101R8
STM32F101RB
STM32F101V8
STM32F101VB
STM32F103C6
STM32F103C8
STM32F103R6
STM32F103R8
STM32F103RB
STM32F103V8
STM32F103VB

STR7IX

These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 73X

These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 75X

These devices are ARM7TDMI-S based.
All devices of this family are supported by J-Link.

STR91X

These device are ARM966E-S based.
All devices of this family are supported by J-Link.

Flash erasing

The devices have 3 TAP controllers built-in. When starting J-Link . exe, it reports 3 JTAG devices. A special tool, J-
Link STR9 Commander (JLinkSTR91x . exe) is available to directly access the flash controller of the device. This tool
can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall. For
more information about the J-Link STR9 Commander, please refer to J-Link STR91x Commander (Command line tool)
on page 36.

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

STM32

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

Option byte programming

we suggest to perform the programming of the option bytes directly from the target application. J-Link (or an additional
software tool like J-Flash) does not support programming of the option bytes.

J-Link_J-TraceARM-3

—e

95

96

Read-protection

The user area internal flash of the STM32 devices can be protected against read by untrusted code. In order to unsecure
a read-protected STM32 device, SEGGER offers a free command line tool which overrides the read-protection of a
STM32 device. For more information about the J-Link STM32 Commander, please refer to J-Link STM32 Commander
(Command line tool) on page 37.

Hardware watchdog

The hardware watchdog of a STM32 device can be enabled by programming the option bytes. If the hardware
watchdog is enabled the device is reset periodically if the watchdog timer is not refreshed and reaches 0. If the hardware
watchdog is enabled by an application which is located in flash and which does not refresh the watchdog timer, the
device can not be debugged anymore.

Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-programmed. SEGGER offers a free command
line tool included in your IAR Embedded Workbench installation which reprograms the option bytes in order to disable
the hardware watchdog. For more information about the STM32 commander, please refer to J-Link STM32
Commander (Command line tool) on page 37.

Note:In order to re-program the option bytes they have to be erased first. Erasing the option bytes will read-protect the
flash of the STM32. The STM32 commander will also override the read-protection of the STM32 device after
disabling the watchdog. Please also note that unsecuring a read-protected device will cause a mass erase of the flash
memory.

Texas Instruments

J-Link has been tested with the following Texas Instruments devices, but should work with any ARM7/9 and Cortex-
M3 device:
TMS470R1A64
TMS470R1A128
TMS470R1A256
TMS470R1A288
TMS470R1A384
TMS470R1B512
TMS470R1B768
TMS470R1B1M
TMS470R1VF288
TMS470R1VF688
TMS470R1VF689

TMS470
All devices of this family are supported by J-Link.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Target interfaces and adapters

This chapter gives an overview about J-Link / |-Trace specific hardware details, such as the pinouts and available

adapters.

20-pin JTAG/SWD connector

PINOUT FOR JTAG

VTref
nTRST
TDI
T™MS
TCK

RTCK [
TDO
RESET

DBGRQ
5V-Supply

N W =

11
13
15
17
19

°2
e 4
®6
®3
e 10
®12
® 14
® 16
® 18
® 20

NC

GND
GND
GND
GND
GND
GND
GND
GND
GND

J-Link and J-Trace have a JTAG connector compatible to ARM’s Multi-
ICE. The JTAG connector is a 20 way Insulation Displacement Connector
(IDC) keyed box header (2.54mm male) that mates with IDC sockets
mounted on a ribbon cable.

The following table lists the J-Link / J-Trace JTAG pinout.

PIN

SIGNAL TYPE

Description

13
15

VTref Input

Not connected NC

nTRST Output

TDI Output

TMS Output

TCK Output

RTCK Input

TDO Input
RESET 11O

DBGRQ NC

5V-Supply Output

This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

This pin is not connected in J-Link.

JTAG Reset. Output from J-Link to the Reset signal of the target JTAG port. Typically
connected to nTRST of the target CPU. This pin is normally pulled HIGH on the target to
avoid unintentional resets when there is no connection.

JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

JTAG mode set input of target CPU. This pin should be pulled up on the target. Typically
connected to TMS of the target CPU.

JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

Return test clock signal from the target. Some targets must synchronize the JTAG inputs
to internal clocks. To assist in meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link supports adaptive clocking,
which waits for TCK changes to be echoed correctly before making further changes.
Connect to RTCK if available, otherwise to GND.

JTAG data output from target CPU. Typically connected to TDO of the target CPU.

Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

This pin is not connected in J-Link. It is reserved for compatibility with other equipment
to be used as a debug request signal to the target system. Typically connected to DBGRQ
if available, otherwise left open.

This pin can be used to supply power to the target hardware. Older J-Links may not be
able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 99.

Table 26: J-Link / J-Trace pinout

J-Link_J-TraceARM-3

97

98

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for JTAG on page 97. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

You may take any female header following the specifications of DIN 41651.
For example:

Harting part-no. 09185206803
Molex part-no. 90635-1202
Tyco Electronics part-no. 2-215882-0

Typical target connection for JTAG

JTAG connector Target board
Volt
A ltage >V
VTref |€ 1
\ 4
nTRST 3% ____ 3 ATRST VCC
TDI > 5 D1
TMS 7 7 ™S
J-Link TCK 2 2 TCK CPU
RTCK |t 11 RTCK
TDO |ei3 13 D0
RESET |12 15 NRST o
GND |29 20

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

Unless otherwise specified by developer’s manual, pull-ups/pull-downs are recommended to be between 2.2 kOhms
and 47 kOhms.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-3

Target power supply

Target interfaces and adapters

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command

Explanation

power on

power off

power on perm

power off perm

Switch target power on
Switch target power off
Set target power supply default to "on"

Set target power supply default to "off"

Table 27: Command List

PINOUT FOR SWD

VTref

Not used
Not used
SWDIO
SWCLK

Not used [
SwWo

RESET

Not used
5V-Supply

N W

11
13
15
17
19

e2
4
®6
e38
e 10
e 12
® 14
® 16
® 18
® 20

NC

GND
GND
GND
GND
GND
GND
GND
GND
GND

The J-Link and J-Trace JTAG connector is also compatible to ARM’s
Serial Wire Debug (SWD).

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

| VTref Input This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

2 Not connected NC This pin is not connected in J-Link.

3 Not Used NC This pin is not used by J-Link. If the device may also be accessed via JTAG, this pin may be
connected to nTRST, otherwise leave open.

5 Not used NC This pin is not used by J-Link. If the device may also be accessed via JTAG, this pin may be
connected to TDI, otherwise leave open.

7 SWDIO /10 Single bi-directional data pin. A pull-up resistor is required. ARM recommends 100
kOhms.

9 SWCLK Output Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state on the target board. Typically
connected to TCK of target CPU.

I Not used NC This pin is not used by J-Link when operating in SWD mode. If the device may also be
accessed via JTAG, this pin may be connected to RTCK, otherwise leave open.

13 SWoO Output Serial Wire Output trace port. (Optional, not required for SWD communication.)

15 RESET /10 Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

17 Not used NC This pin is not connected in J-Link.

19 5V-Supply Output This pin can be used to supply power to the target hardware. Older J-Links may not be

able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 100.

Table 28: J-Link / J-Trace SWD pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

J-Link_J-TraceARM-3

99

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for SWD on page 99. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Typical target connection for SWD

JTAG connector Target board
Volt
5V supply 1¥—————————1% Regulator » VCC
VTref et L
: v
SWDIO |€Z z SWDIO vee
I-Link SWCLK |2 2 SWCLK
-Lin CPU
SWo |¢E—————————- = SWO
RESET |2 1 nRST
GND

* Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

A pull-up resistor is required on SWDIO on the target board. ARM recommends 100 kOhms.
In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 29: Command List

38-pin Mictor JTAG and Trace connector

J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It connects to the target via a 1-1
cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible receptacle. J-Trace supports 4,
8, and 16-bit data port widths with the high density target connector described below.

IAR J-Link and IAR }J-Trace
100 User Guide J-Link_J-TraceARM-3

Target board trace connector

J-Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and

Pin 1
chamfer

edge of each TRACECLK or on each alternate rising or falling edge.

CONNECTING THE TARGET BOARD

J-Trace connects to the target board via a 38-pin trace cable. This cable has a receptacle on the one side, and a plug on
the other side. Alternatively J-Trace can be connected with a 20-pin JTAG cable.

Warning: Never connect trace cable and JTAG cable at the same time because this

may harm your J-Trace and/or your target.

J-Trace

JTAG

Trace JTAG

-
=
1
(2}
®
0
Q
=
®

J-Trace

JTAG

Trace JTAG

o
—
>
()
0
Q
o
@

J-Link_J-TraceARM-3

Target interfaces and adapters

TRACEPKT([n:0] at each rising

J-Trace

-
=
3
(2}
o
O
Q
=
o

9|qed 9vV1ir

—e

101

PINOUT

The following table lists the JTAG+Trace connector pinout. It is compatible to the "Trace Port Physical Interface’'
described in [ETM], 8.2.2 "Single target connector pinout".

"

PIN SIGNAL Description
| NC No connected.
2 NC No connected.
3 NC No connected.
4 NC No connected.
5 GND Signal ground.
6 TRACECLK Clocks trace data on rising edge or both edges.
7 DBGRQ Debug request.
8 DBGACK Debug acknowledge from the test chip, high when in debug state.
9 RESET Open-collector output from the run control to the target system reset.
10 EXTTRIG Optional external trigger signal to the Embedded trace Macrocell (ETM). Not used.
Leave open on target system.
I TDO Test data output from target JTAG port.
12 VTRef Signal level reference. It is normally fed from Vdd of the target board and must not

have a series resistor.

13 RTCK Return test clock from the target JTAG port.

14 VSupply Supply voltage. It is normally fed from Vdd of the target board and must not have a
series resistor.

I5 TCK Test clock to the run control unit from the JTAG port.

6 Trace signal 12 Trace signal. For more information, please refer to Assignment of trace information pins

between ETM architecture versions on page 103.
17 T™S Test mode select from run control to the JTAG port.

18 Trace signal |1 Trace signal. For more information, please refer to Assignment of trace information pins
between ETM architecture versions on page 103.

19 TDI Test data input from run control to the JTAG port.

20 Trace signal 10 Trace signal. For more information, please refer to Assignment of trace information pins
between ETM architecture versions on page 103.

21 nTRST Active-low JTAG reset
22 Trace signal 9 Trace signals. For more information, please refer to Assignment of trace information pins
23 Trace signal 20 between ETM architecture versions on page 103.

24 Trace signal 8
25 Trace signal 19
26 Trace signal 7
27 Trace signal 18
28 Trace signal 6
29 Trace signal 17
30 Trace signal 5
31 Trace signal 16
32 Trace signal 4
33 Trace signal I5
34 Trace signal 3
35 Trace signal 14
36 Trace signal 2
37 Trace signal 13
38 Trace signal |

Table 30: JTAG+Trace connector pinout

IAR J-Link and IAR }J-Trace
102 User Guide J-Link_J-TraceARM-3

Target interfaces and adapters

ASSIGNMENT OF TRACE INFORMATION PINS BETWEEN ETM
ARCHITECTURE VERSIONS

The following table show different names for the trace signals depending on the ETM architecture version.

Trace signal ETMvI ETMv2 ETMv3

Trace signal | PIPESTAT[0] PIPESTAT[O] TRACEDATA[O]
Trace signal 2 PIPESTATTI] PIPESTAT(I] TRACECTL
Trace signal 3 PIPESTAT([2] PIPESTAT[2] Logic |

Trace signal 4 TRACESYNC PIPESTAT[3] Logic 0

Trace signal 5 TRACEPKTI0] TRACEPKTIO0] Logic 0

Trace signal 6 TRACEPKTTII] TRACEPKT[I] TRACEDATA[I]
Trace signal 7 TRACEPKTI[2] TRACEPKT[2] TRACEDATA[2]
Trace signal 8 TRACEPKTI3] TRACEPKT[3] TRACEDATA[3]
Trace signal 9 TRACEPKTI[4] TRACEPKT([4] TRACEDATA[4]
Trace signal 10 TRACEPKTIS5] TRACEPKTTI5] TRACEDATA[S]
Trace signal || TRACEPKTI6] TRACEPKTT(6] TRACEDATA[6]
Trace signal 12 TRACEPKTI[7] TRACEPKTI[7] TRACEDATA[7]
Trace signal 13 TRACEPKTI8] TRACEPKTI8] TRACEDATA[8]
Trace signal 14 TRACEPKTI[9] TRACEPKTI[9] TRACEDATA[9]

Trace signal 15
Trace signal 16
Trace signal |7
Trace signal 18
Trace signal 19

Trace signal 20

TRACEPKTI[10]
TRACEPKTII 1]
TRACEPKTI[12]
TRACEPKT[I3]
TRACEPKTI[14]
TRACEPKTII5]

TRACEPKT[10]
TRACEPKT[I 1]
TRACEPKT[12]
TRACEPKT[I3]
TRACEPKT[14]
TRACEPKT[I5]

TRACEDATA[10]
TRACEDATA[I 1]
TRACEDATA[12]
TRACEDATA[I3]
TRACEDATA[4]
TRACEDATA[I5]

Table 31: Assignment of trace information pins between ETM architecture versions

TRACE SIGNALS
Data transfer is synchronized by TRACECLK.

Signal levels
The maximum capacitance presented by J-Trace at the trace port connector,
including the connector and interfacing logic, is less than 6pF. The trace port lines have a matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of 3.0V-3.6V.

Clock frequency
For capturing trace port signals synchronous to TRACECLK, J-Trace supports

a TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK frequencies and the setup and
hold timing of the trace signals with respect to TRACECLK.

Parameter Min. Max. Explanation

Tperiod Sns 1000ns Clock period

Fmax IMHz 200MHz Maximum trace frequency
Tch 2.5ns - High pulse width

Tcl 2.5ns - Low pulse width

Tsh 2.5ns - Data setup high

Thh 1.5ns - Data hold high

Tsl 2.5ns - Data setup low

Thi 1.5ns - Data hold low

Table 32: Clock frequency

J-Link_J-TraceARM-3

—e

103

The diagram below shows the TRACECLK frequencies and the setup and hold timing of the trace signals with respect
to TRACECLK.

Tperiod

A
\ 4

Full / /

TRACECLK Tch Tol

DATA \ /

Tsh Thh Tsl (e

Thl

A
\ 4

Half-rate / \

TRACECLK

Note:J-Trace supports half-rate clocking mode. Data is output on each edge of the TRACECLK signal and
TRACECLK (max) <= 100MHz. For half-rate clocking, the setup and hold times at the JTAG+Trace connector
must be observed.

19-pin JTAG/SWD and Trace connector

J-Trace provides a JTAG/SWD+Trace connector. This connector is a 19-

pin connector. It connects to the target via an 1-1 cable. VTref 1 ee2 | SWDIO/TMS
GND 3 @@ 4 | SWCLK/TCK
GND 5ee6 | SWO/TDO
--- 7 8 |TDI
NC 9 e e 10| nRESET
5V-Supply| 11 e @ 12| TRACECLK
5V-Supply |13 ® ® 14| TRACEDATA[O]
GND 15 ® ® 16|/ TRACEDATA[1]
GND 17 ® ® 18| TRACEDATA[2]
GND 19 ® @ 20| TRACEDATA[3]

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

| VTref Input This is the target reference voltage. It is used to check if the target has power, to

create the logic-level reference for the input comparators and to control the output
logic levels to the target. It is normally fed from Vdd of the target board and must not
have a series resistor.

2 SWDIO/TMS 1o/ JTAG mode set input of target CPU. This pin should be pulled up on the target.
output Typically connected to TMS of the target CPU.

4 SWCLK/TCK Output JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

6 SWO/TDO Input JTAG data output from target CPU. Typically connected to TDO of the target CPU.

--- --- -—- This pin (normally pin 7) is not existent on the 19-pin JTAG/SWD and Trace
connector.

8 TDI Output JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

9 NC NC Not connected inside J-Link. Leave open on target hardware.

10 nRESET /10 Target CPU reset signal. Typically connected to the RESET pin of the target CPU,

which is typically called "nRST", "nRESET" or "RESET".
Table 33: 19-pin JTAG/SWD and Trace pinout

IAR J-Link and IAR }J-Trace
104 User Guide J-Link_J-TraceARM-3

Target interfaces and adapters

PIN SIGNAL TYPE Description

I 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 105.

12 TRACECLK Input Input trace clock. Trace clock = 1/2 CPU clock.

13 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 105.

14 TRACEDATA[O0] Input Input Trace data pin 0.

16 TRACEDATA[I] Input Input Trace data pin 0.

18 TRACEDATA[2] Input Input Trace data pin 0.

20 TRACEDATA[3] Input Input Trace data pin 0.

Table 33: 19-pin JTAG/SWD and Trace pinout

Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should also be connected to GND in the
target system.

TARGET POWER SUPPLY

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"
Table 34: Command List

Adapters

There are various adapters available for J-Link as for example the JTAG isolator, the J-Link RX adapter or the J-Link

Cortex

-M adapter.

For more information about the different adapters, please refer to
http://www.segger.com/jlink-adapters.html.

J-Link_J-TraceARM-3

—e

105

IAR J-Link and IAR }J-Trace
106 User Guide J-Link_J-TraceARM-3

Background information

This chapter provides background information about JTAG and ARM. The ARM7 and ARM?9 architecture is based
on Reduced Instruction Set Computer (RISC) principles. The instruction set and the related decode mechanism are
greatly simplified compared with microprogrammed Complex Instruction Set Computer (CISC).

JTAG

JTAG is the acronym for Joint Test Action Group. In the scope of this document, "the JTAG standard" means
compliance with IEEE Standard 1149.1-2001.

TEST ACCESS PORT (TAP)

JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can provide access to many test support
functions built into a component. It is composed as a minimum of the three input connections (TDI, TCK, TMS) and
one output connection (TDO). An optional fourth input connection (nTRST) provides for asynchronous initialization
of the test logic.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test logic.

TDI Input Serial test instructions and data are received by the test logic at test data input
(TDI).

TMS Input The signal received at test mode select (TMS) is decoded by the TAP controller to

control test operations.

TDO Output Test data output (TDO) is the serial output for test instructions and data from the
test logic.
nTRST Input The optional test reset (nTRST) input provides for asynchronous initialization of
(optional) the TAP controller.

Table 35: Test access port

DATA REGISTERS

JTAG requires at least two data registers to be present: the bypass and the boundary-scan register. Other registers are
allowed but are not obligatory.

Bypass data register
A single-bit register that passes information from TDI to TDO.
Boundary-scan data register

A test data register which allows the testing of board interconnections, access to input and output of components when
testing their system logic and so on.

INSTRUCTION REGISTER

The instruction register holds the current instruction and its content is used by the TAP controller to decide which test
to perform or which data register to access. It consist of at least two shift-register cells.

J-Link_J-TraceARM-3

107

THE TAP CONTROLLER

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK signals of the
TAP and controls the sequence of operations of the circuitry.

TAP controller state diagram

<< Reset <
tms=1

tms=0
Idle tms=1
tms=0 i
tms=1
Update-IR
tms=1 tms=0

State descriptions
Reset

The test logic is disabled so that normal operation of the chip logic can continue unhindered. No matter in which state
the TAP controller currently is, it can change into Reset state if TMS is high for at least 5 clock cycles. As long as TMS
is high, the TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this state remains active as long as
TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected data registers is initiated.
IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction register is initiated.
Capture-DR

Data may be loaded in parallel to the selected test data registers.

Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards the serial output with each clock.
Exit1-DR

Temporary controller state.

IAR J-Link and IAR }J-Trace
108 User Guide J-Link_J-TraceARM-3

Background information —e

Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.

Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to Update-DR.
Update-DR

Data contained in the currently selected data register is loaded into a latched parallel output (for registers that have such
a latch). The parallel latch prevents changes at the parallel output of these registers from occurring during the shifting
process.

Capture-IR

Instructions may be loaded in parallel into the instruction register.

Shift-IR

The instruction register shifts the values in the instruction register towards TDO with each clock.
Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.

Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to Update-IR.
Update-IR

The values contained in the instruction register are loaded into a latched parallel output from the shift-register path.
Once latched, this new instruction becomes the current one. The parallel latch prevents changes at the parallel output
of the instruction register from occurring during the shifting process.

Embedded Trace Macrocell (ETM)

Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities for ARM processors. ETM
allows to capture information on the processor's state without affecting the processor's performance. The trace
information is exported immediately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded and saved in real time. This
information can be used to analyze program flow and execution time, perform profiling and locate software bugs that
are otherwise very hard to locate. A typical situation in which code trace is extremely valuable, is to find out how and
why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The debugger enables all the ETM facilities
and displays the trace information that has been captured. J-Trace is seamlessly integrated into the IAR Embedded
Workbench® IDE. The advanced trace debugging features can be used with the [AR C-SPY debugger.

TRIGGER CONDITION

The ETM can be configured in software to store trace information only after a specific sequence of conditions. When
the trigger condition occurs the trace capture stops after a programmable period.

CODE TRACING AND DATA TRACING

Code trace

Code tracing means that the processor outputs trace data which contain information about the instructions that have
been executed at last.

J-Link_J-TraceARM-3 109

Data trace

Data tracing means that the processor outputs trace data about memory accesses (read / write access to which address
and which data has been read / stored). In general, J-Trace supports data tracing, but it depends on the debugger if this
option is available or not. Note that when using data trace, the amount of trace data to be captured rises enormously.

J-TRACE INTEGRATION - IAR EWARM

In the following a sample integration of J-Trace and the trace functionality on the debugger side is shown.

IAR J-Link and IAR }J-Trace

110 User Guide J-Link_J-TraceARM-3

Code coverage - Disassembly tracing

ZZ1AR Embedded Workbench IDE
File Edit View Project Debug Disassembly J-link Tools ‘Window Help

Background information

[-[Ox]

IEE IR FZyY %=

B &0 [EE TR S b ob|

CeZaLEZT|X

oled_lle | stm32f10x_rvic.c

93 #ifdef DEBUG
94 debug(>;
25 flendif

26

® 197
98 clock systen
39 i Teiess

BZ lh.fnd:f EHBJLRSH
#% Set the Uector Table hase location at Bx20000000 */

34 NUlC,S:t-J:ctnr-'lahl:(NUlC Ue:tTahJRH Bx@3;

@5 flelse ~x UECT_TAB_FLA:

B6 /% Set the U=ctnl~ Table

has: location at B:

@87 NUIC_S ahle(NVIC VectTah_FLASH, 8x@>;
88 flendif
B2 NUIC_PriorityGroupConfig{(NUIC_PriorityGroup_4>;
a
77 SysTick end of count event each B.1s with input clock equal to ?MHz CHCLK/8.
1] SysTick_SetReload(906: >H

77 Enable SysTick interrupt
SysTick_| lTCunfl.g(ENRBLE)
SysTick _CounterCmd{SysTick_Counter_Enable>;

#7 Buttons port init
77 GPIO enable clock and release Res
RCC_APB2PeriphResetCmd(RCCJPBZPEPIF}] GPIOR

i RCC_APB2Periph_GPIOG, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA

RCC_APB2Periph_GPIOG. ENABLE);

GPIO_InitStructure. GPIOJ].n = B1_MASK

GPIOJ‘DdE INJLORTING,
GPIO_Speed S@MHz
GPIO_Init<Bi_PORT. &GPIO_] lnltStructure),

GPIO_InitStructure .GPIO_Pin B2_MAS.
GPIO_| lnitStPucture.GPIOJud: GPI0_Mode | INJLORTING,
GPIO_InitStructure .GPI0_Sp GPIO_Speed S@MHz
GPIO_Init<{B2_PORT, &GPIOQ_] lnltStructure),

EXT_CRT_SECTIONCY;

AN_IR port and ADC 1nit
// Enable ADCL and GPIOC c
RCCJPBZP:l'-1.th=setCmd(RCCJPBZPerlpthCl
RCC_APB2PeriphClockCmd (RCC_APB2Periph_ADC1

RCC_APB2Periph_GPIOC. DISABLED;
RCC_APB2Periph_GPIOC. ENABLE);

defaul

o

T — —]

[7PDrawTable_: |
DBodBEAD ~BDLA ADD SP, SP, #0x68
0E00BFA2 ED7O FOF {R4,RE,RE,FC}

77OrawTable_0: [
0800BFA4 DDCO BLE 0X800BF28
0Z00BFAE 0300 LERS RO, RO, #0x0

oid main(woid)

ain:

ain:

L TexT_14:
0E00BFAE EELQ PUSH R4, LR}
0800BFAA BDSE suB SP, SP, #0x20
ebug(l;

OF00EFAC FODIFEAs BL debug

ENTR _CRT_SECTIDN

Clk_Init

SeoTarEs trererez BL clk_Init

HyTC sewe:tnrmmemvx: vectTah FLASH, ox0):
0F00BFEE 2100 S RL,

0800BFBA FOSFE000 MD\IS RO, #0xE00000
0800BFBE FOOLFCES NvIC_: se(ve:tnrmme
HTC Prwrwtvﬁrwuc:mﬁumvxc Friorit 4
DEDOBFCE - F4477040 RO,

300
0800BFCE_ FOO wwic_PriorityGroupcontig

SysTick setRewad[sooaooj

RO, [PC, #0x108

SysTick ITConfig ENAELE H

0800BFDG 2001 Ra,

080DBFD2 FOOLFE1A SyST m< ITCunﬁg
SysTick Countercmd Sys'ﬁ ck_Counter _Enab

0800BFDE 2001 RO,

0B00BFDE FOOLFAEB SySTick Enunter(md
CC_AFB2Feri hRESEtCmd R PBZPEFI h

| REC_APB2ZPEriph, GPIDG DISABLE]S
0800BFDC 2100 Vs R1, #ox0
0F00BFDE F44F7082 MO\I RDv

%
CE_aPB2PEr phResetcmd
bezorTan G oA

0800BFE2 F7FFFASD
Bee apEsper pht lockcmir _ace

L RCC_APB2Feriph GPING, ENABLE):
0BO0BFEG 2101 MOVS
0S00BFEE F44F7082 MOV Rd, wonlod
0BODBFEC F7FFFAZO0 BL RCE_APB2PEr phe nekamd
GPIO_InitStructure.GPIO_Pin = &1_WMASK:
Q600BFFD F43F7080 MOV RO, #0x100

0800BFF4 FEADDOO0

RO, [5P]
SPIO_Initstructure. GPInJmne = GPIO Wode TH_FLOATING:

[fol_[+
oX[Bay =
Indesx Frame [Address [opeode Trace [Comment
003064 003382 0x0B00DGSE E0D4 B PPNWIC_SetvectorTable_2
77TNVIC_SetvectorTable_2:
003065 003383 OXDB00DBAA. 4807 LOR RO, [PC, #0x1C]
003068 003384 00800D8AC 4265 cup .
003067 003388 Ox0E00DSAE D204 BCC TTNVIC_SetvectorTable 4
2PNVIC_SetvectorTable_s:
003068 003zEe Ox08000ZEA 4804 LOR: RO, [FC, #0x10]
003063 003387 0080008BC 4028 ANDS RO, RO, RS
003070 03388 0x0800D8BE 4320 ORRS RO, RO, R4
003071 003zEe Ox080008C0 4304 LOR R1, [FC, #0x10]
003072 003330 0X080008C2 809 LOR R1, [R1]
003073 003391 0X0800DECH 6088 STR RO, [R1, #0x&]
003074 003392 0X0800DBCE BD31 POP {RO,R4,R5,PC}
0032078 003382 Ox0800BFC2 Fd4F Ll RO, #0x300
003076 003394 OX0BO0BFCE FoOL BL NVIC_Pri ori tyGroupCoantig
NYIC_PriorityGroupconfig:
003077 003395 0X0B00DE4C BS10 PUSH {R4,LR]}
003078 00333 Ox0E00DE4E 0004 MaE R4, RO
003079 003357 008000850 Fsea cup R4, #0x700
003080 003338 Ox0E00DEE4 Not executed
003081 003353 00800085 6 FsBa P R4, #0x600
003082 003400 0X0800085A NOT executed
003082 003401 Ox0E00DEEC FEE4 CMF R4, #0xEO00
003084 003402 0x0B8000&60 Not executed
003085 003403 008000862 Fsga <P R4, #0x400
00308e 003404 Ox0E00DEEE Not executed
003087 003405 0x08000868 FsBa P R4, #0x300
003088 003406 0x0800086C NOT executed
TTNVIC_FriorityGroupConfig_0:
003089 003407 0X0B800DS6E E0D4 B 2PNVIC_Pri0r tyGroupContig_2
TTNVIC_FriorityGroupConfig_z:
003030 003408 OX0B00DETA. F80F LOR.W [PC, #0x58]
003091 003409 0X0800DSTE 6800 LOR RO, [RO]
0020382 003410 Ox08000&50 4301 LOR: R1, [PC, #0x4]
003033 003411 0x08000852 4321 ORRS RL, R1, R4
003094 003412 0X0800DEEH 60C1 STR R1, [RO, #0xC]
003095 003413 0X0800D886 BD10 POP {R4,PC}
00303e 0032414 OxHEHEFEA 4876 LOR: RO, [P, #0x1DE]

4

ETM Trace [ETH Function Trace

N

J-Link_J-TraceARM-3

—e

Code coverage

Flle Edi

1AR Embedded Workbench IDE

View Project

Debug Disassembly

Source code tracing

ik Tooks Window Help

=1 E3

BT IR

Fl4y %%

B P GBS b

=l

bﬁ&&nﬂﬂlbulxl

aledl_ll.c | stm3zF10x_nwvic.c

T — C—]

ETM Trace ETM Function Trace

93 Wildel DEBIG
ehug<>; 77O aWTaBT 5
95 frondif |
26 0300BFAE 0500 L=RE RO, RO, #0X0
@ 7 5 oid main{vaid) _
98 </ Init clock system I
99 Clk_Init(>; ain:
2o
. text_
BZ ulfndef E"BJL“SH OEDOEFAE BELO FUSH {R4,LR}
/% Set the Uector Table hase location at Bx20000000 =/ 0BODBFAA 0SB sus P, P, #Ox20
03 MUIC SetboctortonleNUTC UsctTah RAM, Did>: el ireas el 4
05 ftelse /% UECI_TAB_FLASH x/ . bug
. ENTR_CRT_SECTION
Bl (ridef the Mector Tehie Mase docation at oxatamaomn > R —
87 NUIC able<NUIC_VectTab_FLASH. Bx0); eI E
208 ttendif 0800BFES F7FFFFe: Clk_
209 NUIC PriorityGroupConfigCNUIC PriorityGroup 453 | NI, STyt T (NUTC vertTab L ATty eni:
0Z00EFEE
27 SysTick end of count event each B.1s with input clock equal to 9MHz <HCLK/8, defaul 080DEFEA FOSFGO0D MOVS RO, #0x6000000
& SysTick_SetReload<980080); 0B0DBFBE FODLFCES BL nic_setvectorTable
77 Enable SysTick interrupt MY Frior] buGroupcontialHiIC Frisctybroun
SoeTick 1TCont ig¢ENABLEYS 300 ;
SysTick_CounterCmd(SysTick Counter_Enahle); gﬁgﬁfziﬁsEzgg{;g;lzsugow NvIc_priorityGroupcontig
7 Bustons port inis . DS00EFCA 4876 RO, [PC, #0x10E
14 enable clock and release al 3l
R PRz PomipnRosettndd . R APB2Perivh_GPIOR Siabeon Sanr L atus R0,
i RCC_APB2Periph GPIOG, DISABLEY; 0B00BFD2 FOOIFBIA BL Siritk rrcantig
RCC_APB2PeriphClockCnd< RCC_APB2Periph GPIOR SyTick Countercud (SysTick Counter EnaglZ);
0S00BFOE 2001 70, #0x1
! RCC_APB2Periph_GPIOG, ENABLED; DBO0BFDS FODIFAEE Tick_Countercmd
; s labacascnil ot BRI B8
5 GPIO InitStructure.GPIO Pin = BL MASK;
26 GPIO_InitStructure.GPIO Mode = GPIO_Mode IN_FLOATIN! L o Ao
2?7 GPIO_InitStructure.GPIO Speed = GPIO_Speed SBMHz; JEOREFDE Faaf7hez MO Rz A0RiRR i prmesercma
GPIO_Init(Bi_PORT, &GPIO_InitStructured; RCC_APB2PeriphClockomd(RCC aPB2PerTph GPIOA
GPIO_InitStructure.GPIO Pin = B2 MASK; | RCC_APB2PErph_GPIOG, ENABLE):
GEIO_InitStructure . GPIO ode - GPIO Hode [N FLORTING: GB00EFEE 2101 WOVS AT
GPIO_InitStructure.GPI0 Speed = GPIO_Speed_SBMHz QBODEFES F4d4F7OEz MOV RO, #0x104
GPI0_Init<B2_PORT. &GPIO_InitStructure); 0BODBFEC F7FFFA20) RCC_APB2Per1 phcl ockama
GPIO_Initstructure.GPIO Pin = Bl WASK:
EXT_CRT_SECTIONC); 0Z00BFFD F44F7080 RO, #0x100
STl b e, T e = o L o 0w
~ AN_IR port and ADC in 0Z00BFFE 2004 T #0xq
” Enahle ADC1 and GPIOC ‘1 ck N N 0800BFFA FE300003 RO, [SP, #0x3]
RCC_APB2PeriphResetCnd(RCC_APBZPeriph ADCL i RCC_APB2Periph_GPIOC. DISABLED; SPID Tnitstructure.cale SDM = apid fpeidoamia
1o B2 RCC_APB2PerinhClockCnd<RCC_APB2Perinh ADCL i RCC_APBZPerivh GPIOC. ENABLE)} J_I SRS J_I
o
= x[2 v |
Index | Frame | Address [opcode [Trace [Comment [
002368 002686 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
o02403 o02721 OXOB00BEBE 2800 Clk_TInit() +
o0z407 0o0z7zs Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002442 002760 0X0B800BEBE 2800 CIk_INiE() + 86
002446 002764 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0z4s1 00z73e Ox0E00BEEE 2800 CTE_INit() + &6
002485 002803 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
o02520 002838 OXOB00BEBE 2800 CI_Inite) + 66
o0zszd 002842 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002559 002877 0X0B800BEBE 2800 Clk_Init() +
002563 002881 OX0B00BS Ad BS10 RCC. GE(F'IagS(a(us(qu
o028 00z3le Ox0E00BEEE 2800 CTE_Init() +
002602 002920 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
002627 002955 OXOB00BEBE 2800 Clk_TInit() +
o0zEdl 002353 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002676 002994 0X0B800BEBE 2800 Clk_Init() +
a02680 002998 OX0B00BS Ad BS10 R:c,aetnagsmmscusj
o0z71E 003032 Ox0E00BEEE 2800 CTE_INit() + &6
002719 003037 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
oD2754 003072 OXOB00BEBE 2800 Clk_TInit() +
o0zZ7ES 00307 Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002793 003111 0X0B800BEBE 2800 CIk_INiE() + 86
an2797 003115 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0zE3z 003180 Ox0E00BEEE 2800 CTE_INit() + &6
002836 003154 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
002571 003189 OXOB00BEBE 2800 CI_Inite) + 66
o0zETE 003132 Ox0E00BICE EEL1D RCC_USECLKConfig(u3z)
002883 003201 0X0B00BECE Fa4aF CIk_INiE() + 76
o02885 003203 0XD800B3EC B510 RCC_ADCCLKCONTigu3z)
o0z206 0o03zzd 0x0800BEDD 2000 CTE_Init() + &4
002908 003226 0X0800B37C B510 REC, FCLKZCGH‘F'\ grusz)
002923 003241 OXOB00BEDG FaaF Clk_Tnit() +
o0zezE 003z42 Ox0800B324 EEL1D RCC_ PCLKlCUHﬁ a(uiz)
002942 003260 0X0B800BEDE 2000 Clk_Init() +
aD2944 003262 OX0B00B2E4 BS10 R:(,H(chnnﬁg(uzzj
o0z3E3 003z77 Ox0E00BEEY 2002 Cl_Init() + 104
002961 003279 0X0800070C B510 FLASH_SetLatency(u3z)
o02985 003203 OXDBONBEEA 2000 Clk_Inite) + 110
o0zaE7 003208 Ox08000746 EEL1D FLASH_Hal foycleAccessCmd(u3z)
003009 003327 OX0B00BEFO 2010 CIk_INiE() + 116
a03011 003329 0x0800077C BS10 FLASH_PrefetchButfercmd(uzz)
002031 003243 Ox0E00BEFE 2002 Clk_Init() + 122
003033 003351 0X0B00B2AC B510 REC_SYSCLKConTig(u3z)
003083 003371 OXOBO0BEFC BOOL Clk_Inite) + 128
003084 003372 Ox0E00BFES 2100 mainf) + 1
003057 003375 0X0800D88C B538 NYIC_servectorTable(u3z, u3z)
G03075 003353 Faar maing) + 2
o0z2077 003338 Ox0E000E4C EEL1D NYIC_FriorityGroupconfiguzz)
003056 003414 DXDBODBFCA 4876 maing) + 34

IAR J-Link and IAR }J-Trace

112 User Guide

J-Link_J-TraceARM-3

ZZ1AR Embedded Workbench IDE

Fle Edt View Project Debug Disassembly J-nk Tools Window Help

Background information

[-[Ox]

I IEIRPEEIEE

Y W=

B &0 [EE TR S b ob|

CeZaLELTX

main.c | gled_| Tx
74 SCB-OHFSR - OxFFFFFFFF; Golo | |Memory | [E]
SCB->DFSR = OxFFFFFFFF} ext_eer =
> 0600DSE42 4770 B LR
OMAZ_Channell_IRQHandler: _|
* Punction Name : NUIC PriorityGroupConfig o2 Channel 1 TraHandTer:
* Description : Configures the pricrity grouping: pre-emption priority L text _e7:
* and subpriority. 05000844 4770 Bx i
* Input : — NUIC PriorityGroup: specifies the priority grouping bits b
* length. This parameter one of the Following values: M2 _Channel2_IRQHandler:
* = NUIC_PriorityGroup bits for pre-emption priority Piaz_channelz_tRQHandler:
* 4 bits for subpriority -
* - NUIC PriorityGroup. bhits for pre—emption priority Ristese 70 b "
* 3 bits for subpriority oma2_channel3_Irguandler:
* - NUIC_ PriorityGroup 2: 2 hits for pre-emption priority orins Chanmel 3 TRGHaNdTor
* 2 bhits for subpriority | text_ss:
* - NUIC PriorityGroup 3: 3 bits for pre-emption priority 080DDBAE 4770 Bx LR
* hits for subpriority
* T Beioritutrnan 4574 bits for pre-emption preiority 02 _Channe]4_5_TRQHand]er:
e B bits for subpriority omaz_Channel4_s_IRQHandler:
b Quiput i None Sabamesa 4770 Bx ®
* :
Return Mone 0id NuTC PriorityGroupconfio(uzz MVIC PriorityGrouni
E2 goid NUIC PriorityGroupConfisudz NUIC PriorityGroup) T —
NVIC_Priari tyGroupcontig:
/% Check the parameters e e A g
esem waranclS HUTC PRIONITY_GROUPCNUIC_PriorityGroup>s e PusH frate)
o1 ssoopss= 009
B2 /% Set the PRIGROUPL1® ts according to NUIC PriorityGroup value %/ aoert Garan(ls vic mouw GRDUP[N\IIC _EriorityGroup);
83 SCDSSAIRCR = ATRR. UBCTIEY NRSK 1 NOIG riariteGrovns SED0nEn FRBacFE)
94> 08000854 DOOE qu vvwx: pmnm(ycmup:nnﬁg,n
a5 0800DE5E FEB4EFCO CMF R4, €00
a6 0800D85A DOOG BEQ PPNVIC_Priori tyGroupcontia_o
87 % Fanction Name t NUIG Inat 0500DSSC F5BAEFAD CHP Ré, #0X500
98 « Description : Initializes the NUIC peripheral according to the specified ENDED DS ren od A erinaraupcontia t
parancters in the NUIC InitSt 05000866 DDO2 BEQ 27RvIC_Priori tyGroupcontig_o
m* Input O Thieitruct: posnter to s NIIC_InitTypeDef structure Becbeit Prdirree i e pom -
that contains the configuration information for the 0800086C 3 27TRVIC_Priori EyGroupcontia_t
o specified NUIC peripheral. 2nvTC pmumcyﬁmupcnnﬁg o:
13 * Qutput = None 0E00DEEE 004 TTNVIC_FriorityGroupconfig_z
14 % Return : None PPHLIC Pt oP T TyGroupContT g 1
15 08000870 211 RL, #0x64
16 void NUIC_Init<NUIC_InitTypeDefx NUIC_InitStruct> GeniDeze Fatfoosc LoRow RO, [PC, #0x5C]
DBDDDE?E F7FEFCAE assert_Tailed
omitu o _ = @xBe: CE_» AIRCR = ATRCR VECTKEY Mask | NWIC Friori coroup:
18 w32 tmppeiority = 6x00, 0xB0, tnpnask = 0x00; ,_,WIC S e
u, nppre . tmpsul oo87A F8 RO, [PC, #0x58]
DenobE7E Ga0n o Ro, [RO
21 % Check the parameters %/ SRRRREIT eERd = B Ieal J—I
[eol [|
Xa vy e

Index | Frame | Address [opcode [Trace [Comment
002368 002686 OxDSO0BSA+ B51D RCC_GETF1agSTAtLs (UB)

002403 002721 OxDSO0BEBE 2800 Clk_Init() + 66

002407 D0Z7IE OxDEQ0BEAY4 B510 RCC_GetFlagstatus (us)

002442 002760 OXDSODBEBE 2800 Clk_Tnit() + &6

002446 D0Z764 0xDS00BSA+ BS1D RCC_GETF]agstatus (us)
002481 002783 OxDEQ0BEBE 2800 Clk_Initl) + &6

002485 002803 OxDEODBSA B5S1D RCC_GETF1agSTatys (us)
002520 002838 0xDSOOBEBE 2800 Clk_Init() + 66

002524 002842 OxDEQ0BEAY4 B5L0 RCC_GetFlagstatus (us)
002559 002877 OXDSODBEBE 2800 Clk_Tnit() + &6

D02563 D0ZBEL 0xDS00BSA+ B5S1D RCC_GETF]agstatus (us)
002538 002916 OxDEQ0BEBE 2800 Clk_Initl) + &6

002602 002920 OXDEODBSA BS1D RCC_GETF1agSTatys (us)
002637 002955 OxDSO0BEBE 2800 Clk_Init() + 66

002641 D0Z9E3 OxDEQ0BEAY BSL0 RCC_GetFlagstatus (us)
002676 002994 OXDSODBEBE 2800 Clk_Tnit() + &6

002680 D0Z998 0xDE00BSA+ B5S1D RCC_GETF]agstatus (us)

002715 002037 OxDEQ0BEBE 2800 Clk_Initl) + &6

002719 003037 OXDEODBSA B51D RCC_GETF1agSTatys (us)
002754 003072 OxDSO0BEBE 2800 Clk_Init() + 66

002758 002076 OxDEQ0BEAY4 BS10 RCC_GetFlagstatus (us)

002793 003111 OXDSODBEBE 2800 Clk_Tnit() + &6

002797 DOZ115 0xDS00BSA+ B51D RCC_GETF]agstatus (us)

002832 00Z180 OxDEQ0BEBE 2800 Clk_Initl) + &6

002836 003154 OXDSO0BSA B51D RCC_GETF1agSTatys (us)
002871 003189 OxDSO0BEBE 2800 Clk_Init() + 66

002875 DOP187 OxDEQ0BICE BSLO RCC_USECLKCONTigluzz)

002883 003201 OXDSODBECE FadF Clk_Tnit() + 76

002885 003203 0xDS00BIEC B51D RCC_ADCCLKCONT gluz2)
002306 002224 OxDEQ0BEDD 2000 Clk_Initl) + &4

002308 003226 OXDEODB3PC BS1D RCC, PCLKZ(nm‘lg(u}zj

002923 003241 0xDS00BEDG Fa4F Clk_Tnit() +

002325 00Z24I OxDEQ0BI34 B5LO Rcc,Pchcunﬁg[uzzJ

002942 003260 OXDSODBEDE 2000 Clk_Tnit() + s8

D02944 D03262 0xDE00BZE4 B51D RCC_HCLKCON i g(u32)

002355 002277 OxOS00BEE4 2002 Clk_Initl) + 104

002961 003275 OxDE00DFOC B51D FLASH_SETLarency(u3z)

002985 003303 OxDSO0BEEA 2000 clk_Init() + 110

002387 DOP30E OxDE00D74E B5LD FLASH Han’Cyc]EA::esscmd[uZZ]
003009 003327 OXDSOOBEFD 2010 Clk_Tnit() + 11

003011 003329 0x0800D7FC BS1D FLASH Prefetchauffarcmn(usz)
003031 002343 OxOS00BEFE 2002 Clk_Init() + 122

003033 003351 OxDE0DBZAC B51D RCC_SYSCLKCONTI g(uz2)

003053 003371 0xDSO0BEFC BOOL clk_Init() + 128

003054 00P37z OxDEQ0BFEE 2100 main() + 18

003057 003375 Ox0S00DEEC B538 NVIC_SetvectorTable(uiz, u3z)
003075 003393 0xDS0DBFC2 FasF main() + 26

[iliE g [LEEEH [ELELLTEE EELY REC B OF T BT oUpEaR T GTLEYY
003056 003414 OXDEOOBFCA 4876 main() + 34

ETM Trace ETM Function Trace

The =

J-Link_J-TraceARM-3

—e

113

Embedded Trace Buffer (ETB)

The ETB is a small, circular on-chip memory area where trace information is stored during capture. It contains the data
which is normally exported immediately after it has been captured from the ETM. The buffer can be read out through
the JTAG port of the device once capture has been completed. No additional special trace port is required, so that the
ETB can be read via J-Link. The trace functionality via J-Link is limited by the size of the ETB. While capturing runs,
the trace information in the buffer will be overwritten every time the buffer size has been reached.

3, J-Link ARM M=

SEGGER J-Link Commander U3.72c ('7’ for help>

Compiled Jul 4 2887 28:17:14

DLL version U3.72c. compiled Jul 4 2887 28:17:89
Firmuare : ggL%Ek compiled Jun 14 2887 14:36:33 ARM Rev.5

: RDI. FlashBP. FlashDL. JFlash. GDB
19V

kH=
: CP15.8.8: Bx41869264: ARM. Architecure STEJ
= CP15.8.1: Bx1D192192: ICache: 32kB (4=256%32>, DCache: 32kB (4=256%32)>
Found 2 JTAG devices, Total IRLen = 8:
Id of device H#8: Bx1B?BAFAF
Id of device #1: Bx1798@FAF
Found ARM with core Id Bx1798BFBF (ARM?>
ETH U1.3: & pairs addr.comp,. 8 data comp, 16 MM decs,. 4 counters. sequencer
ETB U1.8: 2848x24 bit RAM
J-Link>eth

(ETBIBxBB1> : 1B?BAFAF

(ETBI[Bx61 1> : AAABAERA

(ETBIBxB21> : 0006618

(ETBIBxB3 1> : 00000668

(ETB[BxB41> : BACEBB1B?
RAM read pointer <(ETBI[BxB51> : BBEBAOBA
RAM write pointer (ETEBI[BxB61> : BBEBAOBA
Trigger counter (ETBL[BxB71> : BBEBAOBA
Control (ETBLBxB81> : BA0OOOOA
J-Link>

The result of the limited buffer size is that not more data can be traced than the buffer can hold. Through this limitation
is an ETB not in every case an fully-fledged alternative to the direct access to an ETM via J-Trace.

Flash programming

J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities - reading and writing RAM, CPU
registers, starting and stopping the CPU, and setting breakpoints. The standard DLL does not have API functions for
flash programming. However, the functionality offered can be used to program the flash. In that case, a flashloader is
required.

HOW DOES FLASH PROGRAMMING VIA J-LINK / }-TRACE WORK?

This requires extra code. This extra code typically downloads a program into the RAM of the target system, which is
able to erase and program the flash. This program is called RAM code and "knows" how to program the flash; it
contains an implementation of the flash programming algorithm for the particular flash. Different flash chips have
different programming algorithms; the programming algorithm also depends on other things such as endianess of the
target system and organization of the flash memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The
RAM code requires data to be programmed into the flash memory. There are 2 ways of supplying this data: Data
download to RAM or data download via DCC.

DATA DOWNLOAD TO RAM

The data (or part of it) is downloaded to an other part of the RAM of the target system. The Instruction pointer (R15)
of the CPU is then set to the start address of the Ram code, the CPU is started, executing the RAM code. The RAM
code, which contains the programming algorithm for the flash chip, copies the data into the flash chip. The CPU is
stopped after this. This process may have to be repeated until the entire data is programmed into the flash.

IAR J-Link and IAR }J-Trace
114 User Guide J-Link_J-TraceARM-3

Background information —e

DATA DOWNLOAD VIA DCC

In this case, the RAM code is started as described above before downloading any data. The RAM code then
communicates with the host computer (via DCC, JTAG and J-Link / J-Trace), transferring data to the target. The RAM
code then programs the data into flash and waits for new data from the host. The WriteMemory functions of J-Link /
J-Trace are used to transfer the RAM code only, but not to transfer the data. The CPU is started and stopped only once.
Using DCC for communication is typically faster than using WriteMemory for RAM download because the overhead
is lower.

AVAILABLE OPTIONS FOR FLASH PROGRAMMING

There are different solutions available to program internal or external flashes connected to ARM cores using J-Link /
J-Trace. The different solutions have different fields of application, but of course also some overlap.

J-Link / J-Trace firmware

The heart of J-Link / J-Trace is a microcontroller. The firmware is the software executed by the microcontroller inside
of the J-Link / J-Trace. The J-Link / J-Trace firmware sometimes needs to be updated. This firmware update is
performed automatically as necessary by the JLink ARM.dII.

FIRMWARE UPDATE

Every time you connect to J-Link / J-Trace, JLinkARM.dII checks if its embedded firmware is newer than the one used
the J-Link / J-Trace. The DLL will then update the firmware automatically. This process takes less than 3 seconds and
does not require a reboot.

It is recommended that you always use the latest version of JLink ARM.dII.
SEGGER J-Link Commander UZ2.68.81. '?' for help.

Compiled 14:82:4% on Oct 25 2085,
1] datiq fi?muare: J-Link compiled Oct 28 28HA5 14:41:31 ARM Rev.bH

«-- Firmuare update successful. CRC=5EF3
Waiting for new firmuware to hoot

DLL version U2.78a,. compiled Oct 25 2005 14:82:4A
Firmware: J-Link compiled Oct 20 2685 14:41:31 ARM Rev.5
Hardware: US5.08

SN =

UTarget = @.088AU

Speed set to 38 kHz

J-Link>

In the screenshot:

o The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

INVALIDATING THE FIRMWARE

Downdating J-Link / J-Trace is not performed automatically through an old JLinkARM.dII. J-Link / J-Trace will
continue using its current, newer firmware when using older versions of the JLink ARM.dII.

Note:Downdating J-Link / J-Trace is not recommended, you do it at your own risk!

Note:Note also the firmware embedded in older versions of JLink ARM.dIl might not execute properly with newer
hardware versions.

J-Link_J-TraceARM-3 115

To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firmware, using the command exec

InvalidateFW.
[#%] ink.exe =]

SEGGER J-Link Commander U2_.74_81. 7' for help.

Compiled 18:17:23 on Mov 25 2885,

DLL version U2_.74bh, compiled Hou 25 2085 18:17:-13

Firmware: J-Link compiled Mov 17 2085 i6:12:19 ARH Rev.§

Hardware : US .00

SN =

UTarget = @.808l)

Speed set to 38 kH=

J-Link>exec invalidatefuw

Info: Updating firmware: J-Link compiled NHOU 17 2885 16:12:19 ARH Rev. 5

Info: Replacing firmuware: J-Link compiled Mov 17 2885 16:12:1%9 ARH Rev. 5

Info: ..- Firmuware update successful. CRC=CDI3
Info: Waiting for new firmuware to boot

J-Link?>

In the screenshot, the red box contains information about the formerly used J-Link / J-Trace firmware version.

Use an application (for example JLink . exe) which uses the desired version of JLink ARM.dIl. This automatically
replaces the invalidated firmware with its embedded firmware.

JLink.exe =l

SEGGER J-Link Commander U2_68._.81. 7' for help.

Compiled 14:82:4% on Oct 25 2805.

Updating firmware: J-Link compiled Oct 20 2805 14:41:31 ARM Rev.5
i firmuware: J-Link compiled NOU 17 2085 16:12:19 ARH Rev.5S
Firmuware update successful. CRC=5EF3

Waiting for new firmuware to boot

DLL version U2_.78a, compiled Oct 25 2085 14:-82:-48

Firmuware: J-Link compiled Oct 20 2085 14:-41:-31 ARM Rev .5

Hardware: US.00
SN =

UTarget = @.808l)
Speed set to 38 kH=
J—-Link>

In the screenshot:

e The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

IAR J-Link and IAR }J-Trace
116 User Guide J-Link_J-TraceARM-3

Designing the target board for trace

This chapter describes the hardware requirements which have to be met by the target board.

Overview of high-speed board design

Failure to observe high-speed design rules when designing a target system containing an ARM Embedded Trace
Macrocell (ETM) trace port can result in incorrect data being captured by J-Trace. You must give serious consideration
to high-speed signals when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times, even at relatively low
frequencies.

Note:These principles apply to all of the trace port signals (TRACEPKT[0:15], PIPESTAT[0:2], TRACESYNC), but
special care must be taken with TRACECLK.

AVOIDING STUBS

Stubs are short pieces of track that tee off from the main track carrying the signal to, for example, a test point or a
connection to an intermediate device. Stubs cause impedance discontinuities that affect signal quality and must be
avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin functions and where the PCB
is designed to support both functions with differing tracking requirements.

MINIMIZING SIGNAL SKEW (BALANCING PCB TRACK LENGTHS)

You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK, PIPESTAT, TRACESYNC, and
TRACEPKT from the ASIC to the mictor connector to within approximately 0.5 inches (12.5mm) of each other. Any
greater differences directly impact the setup and hold time requirements.

MINIMIZING CROSSTALK

Normal high-speed design rules must be observed. For example, do not run dynamic signals parallel to each other for
any significant distance, keep them spaced well apart, and use a ground plane and so forth. Particular attention must be
paid to the TRACECLK signal. If in any doubt, place grounds or static signals between the TRACECLK and any other
dynamic signals.

USING IMPEDANCE MATCHING AND TERMINATION

Termination is almost certainly necessary, but there are some circumstances where it is not required. The decision is
related to track length between the ASIC and the JTAG+Trace connector, see Terminating the trace signal on page 117
for further reference.

Terminating the trace signal

To terminate the trace signal, you can choose between three termination options:

e Matched impedance
e Series (source) termination

e DC parallel termination.

J-Link_J-TraceARM-3

Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer match the output impedance of the
driver to the impedance of the PCB track on your board. This produces the best possible signal.

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the output impedance of the driver
must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of resistors (Thevenin termination),
fitted at the end of each signal and as close as possible to the JTAG+Trace connector. If a single resistor is used, its
value must be set equal to the PCB track impedance. If the pull-up/pull-down combination is used, their resistance
values must be selected so that their parallel combination equals the PCB track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability from the ASIC than series
termination and so, in practice, DC parallel termination is rarely used.

RULES FOR SERIES TERMINATORS

Series (source) termination is the most commonly used method. The basic rules are:
3 The series resistor must be placed as close as possible to the ASIC pin (less than 0.5 inches).

4 The value of the resistor must equal the impedance of the track minus the output impedance of the output driver. So
for example, a 50 PCB track driven by an output with a 17 impedance, requires a resistor value of 33.

5 A source terminated signal is only valid at the end of the signal path. At any point between the source and the end of
the track, the signal appears distorted because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate correctly. Care must be taken not to connect
devices in this way, unless the distortion does not affect device operation.

Signal requirements

The table below lists the specifications that apply to the signals as seen at the JTAG+Trace connector.

Signal Value
Fmax 200MHz
Ts setup time (min.) 2.0ns
Th hold time (min.) |.Ons
TRACECLK high pulse width (min.) |.5ns
TRACECLK high pulse width (min.) |.5ns

Table 36: Signal requirements

IAR J-Link and IAR }J-Trace
118 User Guide J-Link_J-TraceARM-3

Support and FAQs

This chapter contains troubleshooting tips together with solutions for common problems which might occur
when using J-Link / J-Trace. There are several steps you can take before contacting support. Performing these
steps can solve many problems and often eliminates the need for assistance. This chapter also contains a collection

of frequently asked questions (FAQs) with answers.

Measuring download speed

TEST ENVIRONMENT

JLink.exe has been used for measurement performance. The hardware consisted of:

e PC with 2.6 GHz Pentium 4, running Win2K
e USB 2.0 port

e USB 2.0 hub

e J-Link

e Target with ARM7 running at S0MHz.

Below is a screenshot of JLink. exe after the measurement has been performed.

‘Program Files\SEGGER" JLinkARM_%¥386" JLink.exe

SEGGER J-Link Commander U3.86 {'7?" for help)>
Compiled Jun 27 2888 19:42:43
DLL version U3 .86, compiled Jun 27 2008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 Z2HH@8 18:35:51
Harduware: U6.08
S = 1
UTarget = 3_.274U
JTAG speed: 5 kH=z
: TotallRLen = 4. IRPrint = BxB81

Found 1 JTAG device, Total IRLen = 4:

Id of device HW: Hx3FAFAFAF
Found ARM with core Id Bx3IFBFBFAF (ARM?>

J-Link>speed 12008

JTAG speed: 120HHA kH=

J-Link>testuwspeed

Speed test: Writing 8 = 128kb into memory @ address BxBEBB0AEE
128 kByte written in 185ms t* (7B6.6 kh-/zec)

J—Link>

Troubleshooting
GENERAL PROCEDURE

If you experience problems with J-Link / J-Trace, you should follow the steps below to solve these problems:

Close all running applications on your host system.
Disconnect the J-Link / J-Trace device from USB.

Disable power supply on the target.

NV 0O N o

Re-connect J-Link / J-Trace with the host system (attach USB cable).

J-Link_J-TraceARM-3

119

10 Enable power supply on the target.

Il Try your target application again. If the problem remains continue the following procedure.
12 Close all running applications on your host system again.

13 Disconnect the J-Link / J-Trace device from USB.

14 Disable power supply on the target.

I5 Re-connect J-Link / J-Trace with the host system (attach the USB cable).

16 Enable power supply on the target.

17 Start JTLink. exe.

18 If JLink . exe displays the J-Link / J-Trace serial number and the target processor’s core ID, the J-Link / J-Trace is
working properly and cannot be the cause of your problem.

19 If TLink. exe is unable to read the target processor’s core ID you should analyze the communication between your
target and J-Link / J-Trace with a logic analyzer or oscilloscope. Follow the instructions in section .

TYPICAL PROBLEM SCENARIOS

J-Link / J-Trace LED is off
Meaning:

The USB connection does not work.
Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and reconnecting it. Make sure that
the connectors are firmly attached. Check the cable connections on your J-Link / J-Trace and the host computer. If this
does not solve the problem, check if your cable is defect. If the USB cable is ok, try a different host computer.

J-Link / J-Trace LED is flashing at a high frequency
Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnecting and reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB driver. Deinstall and reinstall the
driver as shown in chapter Sefup on page 31.

J-Link/J-Trace does not get any connection to the target

Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in section General procedure on page 119.

IAR J-Link and IAR }J-Trace
120 User Guide J-Link_J-TraceARM-3

Support and FAQs —e

Signal analysis

The following screenshots show the data flow of the startup and ID communication between J-Link / J-Trace and the
target device.

START SEQUENCE

This is the signal sequence output by J-Link / J-Trace at start of JLink . exe. It should be used as reference when tracing
potential J-Link / J-Trace related hardware problems.

Bus/Signal

Time

Dﬂeaet
[rrsT
[rek
[(ms
o

oo

The sequence consists of the following sections:

e 5 clocks: TDI low, TMS high. Brings TAP controller into RESET state
e 1 clock: TDI low, TMS low: Brings TAP controller into IDLE state

e 2 clocks: TDI low, TMS high: Brings TAP controller into IR-SCAN state

e 2 clocks: TDI low, TMS low: Brings TAP controller into SHIFT-IR state

e 32 clocks: TMS low, TDI: 0x05253000 (Isb first): J-Link Signature as IR data

e 240 clocks: TMS low, last clock high, TDI high: Bypass command

e 1 clock: TDI low, TMS high: Brings TAP controller into UPDATE-IR state.

J-Link / J-Trace checks the output of the device (output on TDO) for the signature to measure the IR length. For ARM7
/ ARMO chips, the IR length is 4, which means TDO shifts out the data shifted in on TDI with 4 clock cycles delay. If

you compare the screenshot with your own measurements, the signals of TCK, TMS, TDI, and TDO should be
identical.

Note that the TDO signal is undefined for the first 10 clocks, since the output is usually tristated and the signal level
depends on external components connected to TDO, such as pull-up or pull-down.

Zoom-in

The next screenshot shows the first 6 clock cycles of the screenshot above. For the first 5 clock cycles, TMS is high
(Resulting in a TAP reset). TMS changes to low with the falling edge of TCK. At this time the TDI signal is low. Your
signals should be identical. Signal rise and fall times should be shorter than 100ns.

Bus/Signal Os 20 40 B0 80 100 120 us 140 us 160 us 180 us 200 us
[| | | | T | | | | |

Time 20 us 214 ug

00 0000000 00 00000000 000000 0000000000 00 000000 00 000000 00 0 0000000 0 00 00000 00 100 00000 0 0 00 0 0 0
0Tk
[Tns
OToi
[Too

If your measurements of TCK, TMS and TDI (the signals output by J-Link / J-Trace) differ from the results shown,
disconnect your target hardware and test the output of TCK, TMS and TDI without a connection to a target, just
supplying voltage to J-Link’s/J-Trace’s JTAG connector: VCC at pin 1; GND at pin 4.

J-Link_J-TraceARM-3 121

Contacting support

Before contacting support, make sure you tried to solve your problem by following the steps outlined in section
General procedure on page 119. You may also try your J-Link / J-Trace with another PC and if possible with another
target system to see if it works there. If the device functions correctly, the USB setup on the original machine or your
target hardware is the source of the problem, not J-Link / J-Trace.

If you need to contact support, send the following information to
support@iar.com:

A detailed description of the problem
J-Link/J-Trace serial number

Output of JLink.exe if available
Your findings of the signal analysis

Information about your target hardware (processor, board, etc.).

Frequently Asked Questions
Supported CPUs

>R

>R

Z R

Z R

>R

>R

Q:
A:

Which CPUs are supported?
J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of supported cores, see sec-
tion Supported CPU cores on page 22.

Maximum JTAG speed

What is the maximum JTAG speed supported by J-Link / J-Trace?
J-Link’s/J-Trace’s maximum supported JTAG speed is 12MHz.

Maximum download speed

What is the maximum download speed?

The maximum download speed is currently about 720 Kbytes/second when downloading into RAM; Com-
munication with a RAM-image via DCC can be still faster. However, the actual speed depends on various
factors, such as JTAG, clock speed, host CPU core etc.

ICE register access

Can I access individual ICE registers via J-Link / J-Trace?
Yes, you can access all individual ICE registers via J-Link / J-Trace.

Read status of JTAG pins

Can J-Link / J-Trace read back the status of the JTAG pins?
Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace as well as the supply
voltage, which can be useful to detect hardware problems on the target system.

Advantage of more expensive JTAG probes

J-Link / J-Trace is quite inexpensive. What is the advantage of some more expensive JTAG probes?

Some of the more expensive JTAG probes offered by other manufacturers support higher download speeds
or an ethernet interface. The functionality is similar, there is no real advantage of using more expensive
probes. J-Link / J-Trace is a suitable solution for the majority of development tasks as well as for produc-
tion purposes. Some features that are available for J-Link / J-Trace, such as a DLL, exposing the full func-
tionality of the emulator, flash download and flash breakpoints are not available for most of these
emulators.

J-Link support of ETM

Does J-Link support the Embedded Trace Macrocell (ETM)?
No. ETM requires another connection to the ARM chip and a CPU with built-in ETM. Most current
ARM?7 / ARMO chips do not have ETM built-in.

J-Link support of ETB

Does J-Link support the Embedded Trace Buffer (ETB)?
Yes. J-Link supports ETB. Most current ARM7 / ARMY chips do not have ETB built-in.

IAR J-Link and IAR }J-Trace
122 User Guide J-Link_J-TraceARM-3

Support and FAQs

Q: Why does J-Link / J-Trace - in contrast to most other JTAG emulators for ARM cores - not require the user
to specify a cache clean area?

A: J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does
not have to download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a
cache clean area is not required.

Registers on ARM 7 / ARM 9 targets

Q: I’m running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read memory okay, but the
processor registers are different. Is this normal?
A: If memory on an ARM 7/9 target is read or written the processor registers are modified. When memory

read or write operations are performed, J-Link preserves the register values before they are modified. The
register values shown in the debugger’s register window are the preserved ones. If now a second instance,
in this case J-Link.exe, reads the processor registers, it reads the values from the hardware, which are the
modified ones. This is why it shows different register values.

J-Link_J-TraceARM-3

123

IAR J-Link and IAR }J-Trace
124 User Guide J-Link_J-TraceARM-3

Glossary

This chapter describes important terms used throughout this manual.

Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace waits for the returned clock before
generating the next clock pulse. The technique allows the J-Link / J-Trace interface unit to adapt to differing signal
drive capabilities and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that are used to interface two or more
software components together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than the most significant byte.
See Little-endian.

Cache cleaning
The process of writing dirty data in a cache to main memory.
Coprocessor

An additional processor that is used for certain operations, for example, for floating-point math calculations, signal
processing, or memory management.

Dirty data

When referring to a processor data cache, data that has been written to the cache but has not been written to main
memory is referred to as dirty data. Only write-back caches can have dirty data because a write-through cache writes
data to the cache and to main memory simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing program. A small program that
helps a larger program communicate with a device such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)

ETM is additional hardware provided by debuggable ARM processors to aid debugging with trace functionality.
Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during capture.
EmbeddedICE

The additional hardware provided by debuggable ARM processors to aid debugging.

Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.
Host

A computer which provides data and other services to another computer. Especially, a computer providing debugging
services to a target being debugged.

ICache

Instruction cache.

ICE Extension Unit

A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

J-Link_J-TraceARM-3 125

ID

Identifier.

IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as JTAG.
Image

An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that circuit is operating.
Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.

IR

See Instruction Register.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.
Little-endian

Memory organization where the least significant byte of a word is at a lower address than the most significant byte.
See also Big-endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the value that was most recently written
to that location. Obtaining memory coherency is difficult when there are multiple possible physical locations that are
involved, such as a system that has main memory, a write buffer, and a cache.

Memory management unit (MMU)

Hardware that controls caches and access permissions to blocks of memory, and translates virtual to physical
addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does not translate virtual
addresses to physical addresses.

Multi-ICE
Multi-processor EmbeddedICE interface. ARM registered trademark.
RESET

Abbreviation of System Reset. The electronic signal which causes the target system other than the TAP controller to
be reset. This signal is also known as "nSRST" "nSYSRST", "nRST", or "nRESET" in some other manuals. See also
nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP controller to be reset. This signal
is known as nICERST in some other manuals. See also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise passively pulled HIGH. Also known
as a "wired AND" signal.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them, including the instruction fetch
unit, arithmetic and logic unit, and the register bank. It excludes optional coprocessors, caches, and the memory
management unit.

IAR J-Link and IAR }J-Trace
126 User Guide J-Link_J-TraceARM-3

Glossary

Program Status Register (PSR)

Contains some information about the current program and some information about the current processor state. Often,
therefore, also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved PSR (SPSR). The SPSR holds the
value the PSR had when the current function was called, and which will be restored when control is returned.

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has been done.
Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the debug agent. The widest possible
adoption of this standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.
RTOS

Real Time Operating System.

Scan Chain

A group of one or more registers from one or more TAP controllers connected between TDI and TDO, through which
test data is shifted.

Semihosting

A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather
than attempting to support the I/O itself.

SwWi

Software Interrupt. An instruction that causes the processor to call a programer-specified subroutine. Used by ARM to
handle semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes. The circuit functionality is defined
in IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is running.
TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and TDO.
TDI

The electronic signal input to a TAP controller from the data source (upstream). Usually, this is seen connecting the J-
Link / J-Trace Interface Unit to the first TAP controller.

TDO

The electronic signal output from a TAP controller to the data sink (downstream). Usually, this is seen connecting the
last TAP controller to the J-Link / J-Trace Interface Unit.

Test Access Port (TAP)
The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO, and nTRST (optional).
Transistor-transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or zero. LSI and VLSI logic often
used TTL with HIGH logic level approaching +5V and LOW approaching OV.

J-Link_J-TraceARM-3

127

Watchpoint
A location within the image that will be monitored and that will cause execution to stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

IAR J-Link and IAR }J-Trace
128 User Guide J-Link_J-TraceARM-3

Literature and references

This chapter lists documents, which we think may be useful to gain deeper understanding of technical details.

Reference Title Comments
[ETM] Embedded Trace Macrocell™ Architecture ~ This document defines the ETM standard, including
Specification, ARM IHI 0014) signal protocol and physical interface.
It is publicly available from ARM (www.arm.com).
[RvI1] RealView® ICE and RealView Trace User This document describes ARM’s realview ice emulator
Guide, ARM DUI 0155C and requirements on the target side.

It is publicly available from ARM (www.arm.com).

Table 37: Literature and References

J-Link_J-TraceARM-3 129

IAR J-Link and IAR }J-Trace
130 User Guide J-Link_J-TraceARM-3

IndeXx

A

Adaptiveclocking 125
Application Program Interface. 125
Big-endian 125
Cachecleaning................ 125
COPIOCESSOT & v v ve ettt et e ettt e e e 125
COPYright NOLICE 2
Dirtydata 125
disclaimer........ ... 2
Dynamic Linked Library (DLL) 125
Embedded Trace Buffer (ETB) 114, 125
Embedded Trace Macrocell (ETM) 109, 125
EmbeddedICE i 125
Halfword....... 125
Host. ..o 125
ICache....... ... 125
ICEExtension Unit............, 125
DD . 126
IEEE 1149.1. . e 126
Image. ... 126
Instruction Register. 126
In-Circuit Emulator.................................. 126
IR 126

J

Joint Test Action Group JTAG) 126
JTAG . .o 107

TAP controller. oo i 108
J-Flash ARM 37
J-Link

Adapters. ... 105

Supported chips 73
J-Link Commander it 36
J-Link STR9 Commander 36
J-Mem Memory Viewer 37
Little-endian. 126
Memory coherency 126
Memory management unit (MMU) 126
Memory Protection Unit MPU)....................... 126
Multi-ICE 126
nTRST. ... 97, 126
Opencollectort 126
Processor Core. ... 126
Program Status Register (PSR) 127
registered trademarks L. 2
Remapping.......o i 127
Remote Debug Interface (RDI)........................ 127
RESET .. 126
RTCK ..o e 127
RTOS. . 127
ScanChain............... 127
Semihosting 127
SetDbgPowerDownOnClose 69
SetSysPowerDownOnldle 69
SUppOrt . ..o 119, 125
Supported flash devices 75, 83

J-Link_J-TraceARM-3

131

Tabs .. 53
TAP Controller.oo i, 127
Target. . ..o 127
TCK . .o e 97,127
510) N 97,127
TDO. .. 97,127
Test Access Port (TAP). 127
trademarks 2
Transistor-transistor logic (TTL)....................... 127
Watchpointo 128
Word ... 128

IAR J-Link and IAR)-Trace
132 User Guide J-Link_J-TraceARM-3

	Preface
	About this guide
	Typographic conventions

	Literature and references
	About this guide 3
	Literature and references 3
	Requirements 11
	Supported OS 11
	J-Link / J-Trace models 11
	Common features of the J-Link product family 22
	Supported CPU cores 22
	Introduction 25
	Software components requiring a license 25
	License types 25
	Legal use of original J-Link software 27
	Products 28
	J-Link OBs 29
	Illegal Clones 29
	Installing the J-Link ARM software and documentation pack 31
	Setting up the USB interface 31
	Uninstalling the J-Link USB driver 33
	J-Link related software 35
	J-Link software and documentation package in detail 35
	Using the J-LinkARM.dll 38
	Connecting the target system 41
	Indicators 41
	JTAG interface 43
	SWD interface 46
	Multi-core debugging 47
	Connecting multiple J-Links / J-Traces to your PC 51
	J-Link control panel 53
	Reset strategies 58
	Using DCC for memory access 61
	J-Link script files 62
	Command strings 65
	Switching off CPU clock during debug 71
	Cache handling 71
	Introduction 73
	Licensing 73
	Supported devices 75
	Using flash download and flash breakpoints 83
	Analog Devices 85
	ATMEL 86
	Freescale 88
	Luminary Micro 89
	NXP 91
	OKI 93
	ST Microelectronics 94
	Texas Instruments 96
	20-pin JTAG/SWD connector 97
	38-pin Mictor JTAG and Trace connector 100
	19-pin JTAG/SWD and Trace connector 104
	Adapters 105
	JTAG 107
	Embedded Trace Macrocell (ETM) 109
	Embedded Trace Buffer (ETB) 114
	Flash programming 114
	J-Link / J-Trace firmware 115
	Overview of high-speed board design 117
	Terminating the trace signal 117
	Signal requirements 118
	Measuring download speed 119
	Troubleshooting 119
	Signal analysis 121
	Contacting support 122
	Frequently Asked Questions 122

	Table of Contents
	Introduction
	Requirements
	Supported OS
	J-Link / J-Trace models
	Model comparison
	J-Link ARM
	J-Link Ultra
	J-Link ARM Lite
	J-Trace ARM
	J-Trace for Cortex-M3

	Common features of the J-Link product family
	Supported CPU cores
	Upcoming supported cores

	Licensing
	Introduction
	Software components requiring a license
	License types
	Built-in license
	Key-based license
	Device-based license

	Legal use of original J-Link software
	Products
	J-Link
	J-Link Ultra
	J-Trace
	IAR: J-Link Lite

	J-Link OBs
	Illegal Clones

	Setup
	Installing the J-Link ARM software and documentation pack
	Setup procedure

	Setting up the USB interface
	Verifying correct driver installation

	Uninstalling the J-Link USB driver

	J-Link and J-Trace related software
	J-Link related software
	J-Link software and documentation package

	J-Link software and documentation package in detail
	J-Link Commander (Command line tool)
	J-Link STR91x Commander (Command line tool)
	J-Link STM32 Commander (Command line tool)
	J-Mem Memory Viewer
	J-Flash ARM (Program flash memory via JTAG)

	Using the J-LinkARM.dll
	What is the JLinkARM.dll?
	Updating the DLL
	Determining the version of JLinkARM.dll
	Determining which DLL is used by a program

	Working with J-Link and J-Trace
	Connecting the target system
	Power-on sequence
	Verifying target device connection
	Problems

	Indicators
	Main indicator
	Input indicator
	Output indicator

	JTAG interface
	Multiple devices in the scan chain
	Sample configuration dialog boxes
	Determining values for scan chain configuration
	JTAG Speed

	SWD interface
	SWD speed
	SWO

	Multi-core debugging
	How multi-core debugging works
	Using multi-core debugging in detail
	Things you should be aware of

	Connecting multiple J-Links / J-Traces to your PC
	How does it work?
	Configuring multiple J-Links / J-Traces
	Connecting to a J-Link / J-Trace with non default USB- Address

	J-Link control panel
	Tabs

	Reset strategies
	Strategies for ARM 7/9 devices
	Strategies for Cortex-M devices

	Using DCC for memory access
	What is required?
	Target DCC handler
	Target DCC abort handler

	J-Link script files
	Supported commands
	Executing J-Link script files

	Command strings
	List of available commands
	Using command strings

	Switching off CPU clock during debug
	Cache handling
	Cache coherency
	Cache clean area
	Cache handling of ARM7 cores
	Cache handling of ARM9 cores

	Flash download and flash breakpoints
	Introduction
	Licensing
	Supported devices
	Using flash download and flash breakpoints
	IAR Embedded Workbench

	Device specifics
	Analog Devices
	ADuC7xxx

	ATMEL
	AT91SAM7
	AT91SAM9

	Freescale
	MAC71x

	Luminary Micro
	Unlocking LM3Sxxx devices
	Stellaris LM3S100 Series
	Stellaris LM3S300 Series
	Stellaris LM3S600 Series
	Stellaris LM3S800 Series
	Stellaris LM3S2000 Series
	Stellaris LM3S6100 Series
	Stellaris LM3S6400 Series
	Stellaris LM3S6700 Series
	Stellaris LM3S6900 Series

	NXP
	LPC

	OKI
	ML67Q40x

	ST Microelectronics
	STR 71x
	STR 73x
	STR 75x
	STR91x
	STM32

	Texas Instruments
	TMS470

	Target interfaces and adapters
	20-pin JTAG/SWD connector
	Pinout for JTAG
	Pinout for SWD

	38-pin Mictor JTAG and Trace connector
	Connecting the target board
	Pinout
	Assignment of trace information pins between ETM architecture versions
	Trace signals

	19-pin JTAG/SWD and Trace connector
	Target power supply

	Adapters

	Background information
	JTAG
	Test access port (TAP)
	Data registers
	Instruction register
	The TAP controller

	Embedded Trace Macrocell (ETM)
	Trigger condition
	Code tracing and data tracing
	J-Trace integration - IAR EWARM

	Embedded Trace Buffer (ETB)
	Flash programming
	How does flash programming via J-Link / J-Trace work?
	Data download to RAM
	Data download via DCC
	Available options for flash programming

	J-Link / J-Trace firmware
	Firmware update
	Invalidating the firmware

	Designing the target board for trace
	Overview of high-speed board design
	Avoiding stubs
	Minimizing Signal Skew (Balancing PCB Track Lengths)
	Minimizing Crosstalk
	Using impedance matching and termination

	Terminating the trace signal
	Rules for series terminators

	Signal requirements

	Support and FAQs
	Measuring download speed
	Test environment

	Troubleshooting
	General procedure
	Typical problem scenarios

	Signal analysis
	Start sequence
	Troubleshooting

	Contacting support
	Frequently Asked Questions

	Glossary
	Literature and references
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W

